Fábio K. Tamaki
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fábio K. Tamaki.
Journal of Insect Physiology | 2009
Fernanda P. Biagio; Fábio K. Tamaki; Walter R. Terra; Alberto F. Ribeiro
The evolution of the digestive system in the Order Orthoptera is disclosed from the study of the morphophysiology of the digestive process in its major taxa. This paper deals with a cricket representing the less known suborder Ensifera. Most amylase and trypsin activities occur in crop and caeca, respectively. Maltase and aminopeptidase are found in soluble and membrane-bound forms in caeca, with aminopeptidase also occurring in ventriculus. Amaranth was orally fed to Gryllodes sigillatus adults or injected into their haemolymph. The experiments were performed with starving and feeding insects with identical results. Following feeding of the dye the luminal side of the most anterior ventriculus (and in lesser amounts the midgut caeca) became heavily stained. In injected insects, the haemal side of the most posterior ventriculus was stained. This suggested that the anterior ventriculus is the main site of water absorption (the caeca is a secondary one), whereas the posterior ventriculus secretes water into the gut. Thus, a putative counter-current flux of fluid from posterior to anterior ventriculus may propel digestive enzyme recycling. This was confirmed by the finding that digestive enzymes are excreted at a low rate. The fine structure of midgut caeca and ventriculus cells revealed that they have morphological features that may be related to their involvement in secretion (movement from cell to lumen) and absorption (movement from lumen to cell) of fluids. Furthermore, morphological data showed that both merocrine and apocrine secretory mechanisms occur in midgut cells. The results showed that cricket digestion differs from that in grasshopper in having: (1) more membrane-bound digestive enzymes; (2) protein digestion slightly displaced toward the ventriculus; (3) midgut fluxes, and hence digestive enzyme recycling, in both starved and fed insects.
Journal of Insect Physiology | 2014
Fábio K. Tamaki; André C. Pimentel; Alcides B. Dias; Christiane Cardoso; Alberto F. Ribeiro; Clélia Ferreira; Walter R. Terra
Cockroaches are among the first insects to appear in the fossil record. This work is part of ongoing research on insects at critical points in the evolutionary tree to disclose evolutionary trends in the digestive characteristics of insects. A transcriptome (454 Roche platform) of the midgut of Periplanetaamericana was searched for sequences of digestive enzymes. The selected sequences were manually curated. The complete or nearly complete sequences showing all characteristic motifs and highly expressed (reads counting) had their predicted sequences checked by cloning and Sanger sequencing. There are two chitinases (lacking mucin and chitin-binding domains), one amylase, two α- and three β-glucosidases, one β-galactosidase, two aminopeptidases (none of the N-group), one chymotrypsin, 5 trypsins, and none β-glucanase. Electrophoretic and enzymological data agreed with transcriptome data in showing that there is a single β-galactosidase, two α-glucosidases, one preferring as substrate maltase and the other aryl α-glucoside, and two β-glucosidases. Chromatographic and enzymological data identified 4 trypsins, one chymotrypsin (also found in the transcriptome), and one non-identified proteinase. The major digestive trypsin is identifiable to a major P. americana allergen (Per a 10). The lack of β-glucanase expression in midguts was confirmed, thus lending support to claims that those enzymes are salivary. A salivary amylase was molecularly cloned and shown to be different from the one from the midgut. Enzyme distribution showed that most digestion occurs under the action of salivary and midgut enzymes in the foregut and anterior midgut, except the posterior terminal digestion of proteins. A counter-flux of fluid may be functional in the midgut of the cockroach to explain the low excretory rate of digestive enzymes. Ultrastructural and immunocytochemical localization data showed that amylase and trypsin are released by both merocrine and apocrine secretion mainly from gastric caeca. Finally, a discussion on Polyneoptera digestive physiology is provided.
Arthropod Structure & Development | 2014
Emiliano C. Monteiro; Fábio K. Tamaki; Walter R. Terra; Alberto F. Ribeiro
This work presents a detailed morphofunctional study of the digestive system of a phasmid representative, Cladomorphus phyllinus. Cells from anterior midgut exhibit a merocrine secretion, whereas posterior midgut cells show a microapocrine secretion. A complex system of midgut tubules is observed in the posterior midgut which is probably related to the luminal alkalization of this region. Amaranth dye injection into the haemolymph and orally feeding insects with dye indicated that the anterior midgut is water-absorbing, whereas the Malpighian tubules are the main site of water secretion. Thus, a putative counter-current flux of fluid from posterior to anterior midgut may propel enzyme digestive recycling, confirmed by the low rate of enzyme excretion. The foregut and anterior midgut present an acidic pH (5.3 and 5.6, respectively), whereas the posterior midgut is highly alkaline (9.1) which may be related to the digestion of hemicelluloses. Most amylase, trypsin and chymotrypsin activities occur in the foregut and anterior midgut. Maltase is found along the midgut associated with the microvillar glycocalix, while aminopeptidase occurs in the middle and posterior midgut in membrane bound forms. Both amylase and trypsin are secreted mainly by the anterior midgut through an exocytic process as revealed by immunocytochemical data.
Biochemistry and biophysics reports | 2016
Fábio K. Tamaki; Éverton M. Araujo; Roberto Rozenberg; Sandro R. Marana
The enzymatic hydrolysis of cellulose and lignocellulosic materials is marked by a rate decrease along the reaction time. Cellobiohydrolase slow dissociation from the substrate and its inhibition by the cellobiose produced are relevant factors associated to the rate decrease. In that sense, addition of β-glucosidases to the enzyme cocktails employed in cellulose enzymatic hydrolysis not only produces glucose as final product but also reduces the cellobiohydrolase inhibition by cellobiose. The digestive β-glucosidase GH1 from the fall armyworm Spodoptera frugiperda, hereafter called Sfβgly, containing the mutation L428V showed an increased kcat for cellobiose hydrolysis. In comparison to assays conducted with the wild-type Sfβgly and cellobiohydrolase TrCel7A, the presence of the mutant L428V increased in 5 fold the initial rate of crystalline cellulose hydrolysis and reduced to one quarter the time needed to TrCel7A produce the maximum glucose yield. As our results show that mutant L428V complement the action of TrCel7A, the introduction of the equivalent replacement in β-glucosidases is a promising strategy to reduce costs in the enzymatic hydrolysis of lignocellulosic materials.
Redox biology | 2015
Pâmela A. Kakimoto; Fábio K. Tamaki; Ariel R. Cardoso; Sandro R. Marana; Alicia J. Kowaltowski
Enhanced mitochondrial generation of oxidants, including hydrogen peroxide (H2O2), is related to a large number of pathological conditions, including diet-induced obesity and steatohepatosis. Indeed, we have previously shown that high fat diets increase the generation of H2O2 in liver mitochondria energized by activated fatty acids. Here, we further study fatty-acid induced H2O2 release in liver mitochondria, and determine the characteristics that regulate it. We find that this production of H2O2 is independent of mitochondrial inner membrane integrity and insensitive to purine nucleotides. On the other hand, palmitate-induced H2O2 production is strongly enhanced by high fat diets and is pH-sensitive, with a peak at a matrix pH of ~8.5. Using recombinantly expressed human very long chain acyl-CoA dehydrogenase, we are able to demonstrate that palmitate-induced H2O2 release may be ascribed to the activity of this enzyme alone, acting as an oxidase. Our results add to a number of findings indicating that sources outside of the electron transport chain can generate significant, physiopathologically relevant, amounts of oxidants in mitochondria.
PLOS ONE | 2014
Fábio K. Tamaki; Larissa C. Textor; Igor Polikarpov; Sandro R. Marana
The statistical coupling analysis of 768 β-glucosidases from the GH1 family revealed 23 positions in which the amino acid frequencies are coupled. The roles of these covariant positions in terms of the properties of β-glucosidases were investigated by alanine-screening mutagenesis using the fall armyworm Spodoptera frugiperda β-glycosidase (Sfβgly) as a model. The effects of the mutations on the Sfβgly kinetic parameters (k cat/K m) for the hydrolysis of three different p-nitrophenyl β-glycosides and structural comparisons of several β-glucosidases showed that eleven covariant positions (54, 98, 143, 188, 195, 196, 203, 398, 451, 452 and 460 in Sfβgly numbering) form a layer surrounding the active site of the β-glucosidases, which modulates their catalytic activity and substrate specificity via direct contact with the active site residues. Moreover, the influence of the mutations on the transition temperature (T m) of Sfβgly indicated that nine of the coupled positions (49, 62, 143, 188, 223, 278, 309, 452 and 460 in Sfβgly numbering) are related to thermal stability. In addition to being preferentially occupied by prolines, structural comparisons indicated that these positions are concentrated at loop segments of the β-glucosidases. Therefore, due to these common biochemical and structural properties, these nine covariant positions, even without physical contacts among them, seem to jointly modulate the thermal stability of β-glucosidases.
Biochemical and Biophysical Research Communications | 2015
Fábio K. Tamaki; Walter R. Terra
Plants have a wide range of chemical defenses against predation, including substances that target digestive serine proteinases of herbivorous. Previous works demonstrated that lepidopteran insects have digestive serine proteinases resistant to plant proteinase inhibitors (PPIs) and ketone modifications, while coleopteran ones are sensitive to those plant defenses. This paper focuses on molecular aspects that lead lepidopteran serine proteinases to PPI and ketone modification resistance. Using biochemical experiments and computer 3D modeling we demonstrated that lepidopteran trypsins are more hydrophobic than coleopteran ones, a feature associated to trypsin oligomerization and decreased inhibition by PPI. Moreover, the determination of pKa values of chymotrypsin catalytic residues obtained by TPCK modification indicates that the environment around the active site of ketone-resistant and -sensitive chymotrypsins are different. Structural analysis using resistant and sensitive chymotrypsins data allowed us to point 2 hotspot regions around the active site that could explain the observed differences. Our set of results highlights features of serine proteinases important for understanding the resistance of insects to plant chemical defenses.
Proteins | 2016
Raphael Santa Rosa Sayegh; Fábio K. Tamaki; Sandro R. Marana; Roberto K. Salinas; Guilherme M. Arantes
Cdc25B phosphatases are involved in cell cycle checkpoints and have become a possible target for developing new anticancer drugs. A more rational design of Cdc25B ligands would benefit from detailed knowledge of its tertiary structure. The conformational flexibility of the C‐terminal region of the Cdc25B catalytic domain has been debated recently and suggested to play an important structural role. Here, a combination of experimental NMR measurements and molecular dynamics simulations for the complete catalytic domain of the Cdc25B phosphatase is presented. The stability of the C‐terminal α‐helix is confirmed, but the last 20 residues in the complete catalytic domain are very flexible, partially occlude the active site and may establish transient contacts with the protein core. This flexibility in the C‐terminal tail may modulate the molecular recognition of natural substrates and competitive inhibitors by Cdc25B. Proteins 2016; 84:1567–1575.
PLOS ONE | 2016
Fábio K. Tamaki; Diorge P. Souza; Valquiria P. Souza; Cecília M. Ikegami; Chuck S. Farah; Sandro R. Marana
The active site residues in GH1 β-glycosidases are compartmentalized into 3 functional regions, involved in catalysis or binding of glycone and aglycone motifs from substrate. However, it still remains unclear how residues outside the active site modulate the enzymatic activity. To tackle this question, we solved the crystal structure of the GH1 β-glycosidase from Spodoptera frugiperda (Sfβgly) to systematically map its residue contact network and correlate effects of mutations within and outside the active site. External mutations neighbouring the functional residues involved in catalysis and glycone-binding are deleterious, whereas mutations neighbouring the aglycone-binding site are less detrimental or even beneficial. The large dataset of new and previously characterized Sfβgly mutants supports that external perturbations are coherently transmitted to active site residues possibly through contacts and specifically disturb functional regions they interact to, reproducing the effects observed for direct mutations of functional residues. This allowed us to suggest that positions related to the aglycone-binding site are preferential targets for introduction of mutations aiming to further improve the hydrolytic activity of β–glycosidases.
Insect Biochemistry and Molecular Biology | 2012
Fábio K. Tamaki; Marcelo H.P. Padilha; André C. Pimentel; Alberto F. Ribeiro; Walter R. Terra