Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabio Marino is active.

Publication


Featured researches published by Fabio Marino.


Science | 2016

A large fraction of HLA class I ligands are proteasome-generated spliced peptides

Juliane Liepe; Fabio Marino; John Sidney; Anita Jeko; Daniel E. Bunting; Alessandro Sette; Peter M. Kloetzel; Michael P. H. Stumpf; Albert J. R. Heck; Michele Mishto

New players in the repertoire Antigen-presenting cells, such as macrophages and dendritic cells, activate immunological T cells by presenting them with antigens bound by major histocompatibility complexes (MHCs). The proteasome typically processes these antigens, which include peptides derived from both self and microbial origins. Liepe et al. now report that, surprisingly, a large fraction of peptides bound to class I MHC on multiple human cell types are spliced together by the proteasome from two different fragments of the same protein. Such merged peptides might turn out to be useful in vaccine or cancer immunotherapy development. Science, this issue p. 354 Spliced peptides make up a major fraction of the epitopes presented by MHC class I on multiple human cell types. The proteasome generates the epitopes presented on human leukocyte antigen (HLA) class I molecules that elicit CD8+ T cell responses. Reports of proteasome-generated spliced epitopes exist, but they have been regarded as rare events. Here, however, we show that the proteasome-generated spliced peptide pool accounts for one-third of the entire HLA class I immunopeptidome in terms of diversity and one-fourth in terms of abundance. This pool also represents a unique set of antigens, possessing particular and distinguishing features. We validated this observation using a range of complementary experimental and bioinformatics approaches, as well as multiple cell types. The widespread appearance and abundance of proteasome-catalyzed peptide splicing events has implications for immunobiology and autoimmunity theories and may provide a previously untapped source of epitopes for use in vaccines and cancer immunotherapy.


Journal of the American Chemical Society | 2015

Extended O-GlcNAc on HLA Class-I-Bound Peptides

Fabio Marino; Marshall W. Bern; Geert P. M. Mommen; Aneika C. Leney; Jacqueline A. M. van Gaans-van den Brink; Alexandre M. J. J. Bonvin; Christopher Becker; Cécile A. C. M. van Els; Albert J. R. Heck

We report unexpected mass spectrometric observations of glycosylated human leukocyte antigen (HLA) class I-bound peptides. Complemented by molecular modeling, in vitro enzymatic assays, and oxonium ion patterns, we propose that the observed O-linked glycans carrying up to five monosaccharides are extended O-GlcNAcs rather than GalNAc-initiated O-glycans. A cytosolic O-GlcNAc modification is normally terminal and does not extend to produce a polysaccharide, but O-GlcNAc on an HLA peptide presents a special case because the loaded HLA class I complex traffics through the endoplasmic reticulum and Golgi apparatus on its way to the cell membrane and is hence exposed to glycosyltransferases. We also report for the first time natural HLA class I presentation of O- and N-linked glycopeptides derived from membrane proteins. HLA class I peptides with centrally located oligosaccharides have been shown to be immunogenic and may thus be important targets for immune surveillance.


Analytical Chemistry | 2016

Implementation of Ultraviolet Photodissociation on a Benchtop Q Exactive Mass Spectrometer and Its Application to Phosphoproteomics.

Kyle L. Fort; Andrey Dyachenko; Clement M. Potel; Eleonora Corradini; Fabio Marino; Arjan Barendregt; Alexander Makarov; Richard A. Scheltema; Albert J. R. Heck

Proteomics applications performed on the popular benchtop Q Exactive Orbitrap mass spectrometer have so far relied exclusively on higher collision-energy dissociation (HCD) fragmentation for peptide sequencing. While this fragmentation technique is applicable to a wide range of biological questions, it also has limitations, and all questions cannot be addressed equally well. Here, we demonstrate that the fragmentation capabilities of the Q Exactive mass spectrometer can be extended with ultraviolet photodissociation (UVPD) fragmentation, complete with synchronization triggering to make it compatible with liquid chromatography (LC)/tandem mass spectrometry (MS/MS) workflows. We show that UVPD not only is directly compatible with LC/MS workflows but also, when combined with these workflows, can result in higher database scores and increased identification rates for complex samples as compared to HCD methods. UVPD as a fragmentation technique offers prompt, high-energy fragmentation, which can potentially lead to improved analyses of labile post-translational modifications. Techniques like HCD result in substantial amounts of modification losses, competing with fragmentation pathways that provide information-rich ion fragments. We investigate here the utility of UVPD for identification of phosphorylated peptides and find that UVPD fragmentation reduces the extent of labile modification loss by up to ∼60%. Collectively, when integrated into a complete workflow on the Q Exactive Orbitrap, UVPD provides distinct advantages to the analysis of post-translational modifications and is a powerful and complementary addition to the proteomic toolbox.


Molecular & Cellular Proteomics | 2016

Sampling From the Proteome to the Human Leukocyte Antigen-DR (HLA-DR) Ligandome Proceeds Via High Specificity

Geert P. M. Mommen; Fabio Marino; Hugo D. Meiring; Martien C. M. Poelen; Jacqueline A. M. van Gaans-van den Brink; Shabaz Mohammed; Albert J. R. Heck; Cécile A. C. M. van Els

Comprehensive analysis of the complex nature of the Human Leukocyte Antigen (HLA) class II ligandome is of utmost importance to understand the basis for CD4+ T cell mediated immunity and tolerance. Here, we implemented important improvements in the analysis of the repertoire of HLA-DR-presented peptides, using hybrid mass spectrometry-based peptide fragmentation techniques on a ligandome sample isolated from matured human monocyte-derived dendritic cells (DC). The reported data set constitutes nearly 14 thousand unique high-confident peptides, i.e. the largest single inventory of human DC derived HLA-DR ligands to date. From a technical viewpoint the most prominent finding is that no single peptide fragmentation technique could elucidate the majority of HLA-DR ligands, because of the wide range of physical chemical properties displayed by the HLA-DR ligandome. Our in-depth profiling allowed us to reveal a strikingly poor correlation between the source proteins identified in the HLA class II ligandome and the DC cellular proteome. Important selective sieving from the sampled proteome to the ligandome was evidenced by specificity in the sequences of the core regions both at their N- and C- termini, hence not only reflecting binding motifs but also dominant protease activity associated to the endolysosomal compartments. Moreover, we demonstrate that the HLA-DR ligandome reflects a surface representation of cell-compartments specific for biological events linked to the maturation of monocytes into antigen presenting cells. Our results present new perspectives into the complex nature of the HLA class II system and will aid future immunological studies in characterizing the full breadth of potential CD4+ T cell epitopes relevant in health and disease.


Journal of Proteome Research | 2013

Universal Quantitative Kinase Assay Based on Diagonal SCX Chromatography and Stable Isotope Dimethyl Labeling Provides High-definition Kinase Consensus Motifs for PKA and Human Mps1

Marco L. Hennrich; Fabio Marino; Vincent Groenewold; Geert J. P. L. Kops; Shabaz Mohammed; Albert J. R. Heck

In order to understand cellular signaling, a clear understanding of kinase-substrate relationships is essential. Some of these relationships are defined by consensus recognition motifs present in substrates making them amendable for phosphorylation by designated kinases. Here, we explore a method that is based on two sequential steps of strong cation exchange chromatography combined with differential stable isotope labeling, to define kinase consensus motifs with high accuracy. We demonstrate the value of our method by evaluating the motifs of two very distinct kinases: cAMP regulated protein kinase A (PKA) and human monopolar spindle 1 (Mps1) kinase, also known as TTK. PKA is a well-studied basophilic kinase with a relatively well-defined motif and numerous known substrates in vitro and in vivo. Mps1, a kinase involved in chromosome segregation, has been less well characterized. Its substrate specificity is unclear and here we show that Mps1 is an acidophilic kinase with a striking tendency for phosphorylation of threonines. The final outcomes of our work are high-definition kinase consensus motifs for PKA and Mps1. Our generic method, which makes use of proteolytic cell lysates as a source for peptide-substrate libraries, can be implemented for any kinase present in the kinome.


Angewandte Chemie | 2014

Simultaneous Assessment of Kinetic, Site-Specific, and Structural Aspects of Enzymatic Protein Phosphorylation†

Michiel van de Waterbeemd; Philip Lössl; Violette Gautier; Fabio Marino; Masami Yamashita; Elena Conti; Arjen Scholten; Albert J. R. Heck

Protein phosphorylation is a widespread process forming the mechanistic basis of cellular signaling. Up to now, different aspects, for example, site-specificity, kinetics, role of co-factors, and structure-function relationships have been typically investigated by multiple techniques that are incompatible with one another. The approach introduced here maximizes the amount of information gained on protein (complex) phosphorylation while minimizing sample handling. Using high-resolution native mass spectrometry on intact protein (assemblies) up to 150 kDa we track the sequential incorporation of phosphate groups and map their localization by peptide LC-MS/MS. On two model systems, the protein kinase G and the interplay between Aurora kinase A and Bora, we demonstrate the simultaneous monitoring of various aspects of the phosphorylation process, namely the effect of different cofactors on PKG autophosphorylation and the interaction of AurA and Bora as both an enzyme-substrate pair and physical binding partners.


Nucleic Acids Research | 2018

The SysteMHC Atlas project

Wenguang Shao; Patrick G A Pedrioli; Witold Wolski; Christian Scurtescu; Emanuel Schmid; Juan Antonio Vizcaíno; Mathieu Courcelles; Heiko Schuster; Daniel J. Kowalewski; Fabio Marino; Cecilia S. Lindestam Arlehamn; Kerrie Vaughan; Bjoern Peters; Alessandro Sette; Tom H. M. Ottenhoff; Krista E. Meijgaarden; Natalie E. Nieuwenhuizen; Stefan H. E. Kaufmann; Ralph Schlapbach; John Castle; Alexey I. Nesvizhskii; Morten Nielsen; Eric W. Deutsch; David S. Campbell; Robert L. Moritz; Roman A. Zubarev; Anders Jimmy Ytterberg; Anthony W. Purcell; Alberto Paradela; Qi Wang

Abstract Mass spectrometry (MS)-based immunopeptidomics investigates the repertoire of peptides presented at the cell surface by major histocompatibility complex (MHC) molecules. The broad clinical relevance of MHC-associated peptides, e.g. in precision medicine, provides a strong rationale for the large-scale generation of immunopeptidomic datasets and recent developments in MS-based peptide analysis technologies now support the generation of the required data. Importantly, the availability of diverse immunopeptidomic datasets has resulted in an increasing need to standardize, store and exchange this type of data to enable better collaborations among researchers, to advance the field more efficiently and to establish quality measures required for the meaningful comparison of datasets. Here we present the SysteMHC Atlas (https://systemhcatlas.org), a public database that aims at collecting, organizing, sharing, visualizing and exploring immunopeptidomic data generated by MS. The Atlas includes raw mass spectrometer output files collected from several laboratories around the globe, a catalog of context-specific datasets of MHC class I and class II peptides, standardized MHC allele-specific peptide spectral libraries consisting of consensus spectra calculated from repeat measurements of the same peptide sequence, and links to other proteomics and immunology databases. The SysteMHC Atlas project was created and will be further expanded using a uniform and open computational pipeline that controls the quality of peptide identifications and peptide annotations. Thus, the SysteMHC Atlas disseminates quality controlled immunopeptidomic information to the public domain and serves as a community resource toward the generation of a high-quality comprehensive map of the human immunopeptidome and the support of consistent measurement of immunopeptidomic sample cohorts.


Molecular & Cellular Proteomics | 2017

A molecular basis for the presentation of phosphorylated peptides by HLA-B antigens

Adán Alpízar; Fabio Marino; Antonio Ramos-Fernández; Manuel Lombardía; Anita Jeko; Florencio Pazos; Alberto Paradela; César Santiago; Albert J. R. Heck

As aberrant protein phosphorylation is a hallmark of tumor cells, the display of tumor-specific phosphopeptides by Human Leukocyte Antigen (HLA) class I molecules can be exploited in the treatment of cancer by T-cell-based immunotherapy. Yet, the characterization and prediction of HLA-I phospholigands is challenging as the molecular determinants of the presentation of such post-translationally modified peptides are not fully understood. Here, we employed a peptidomic workflow to identify 256 unique phosphorylated ligands associated with HLA-B*40, -B*27, -B*39, or -B*07. Remarkably, these phosphopeptides showed similar molecular features. Besides the specific anchor motifs imposed by the binding groove of each allotype, the predominance of phosphorylation at peptide position 4 (P4) became strikingly evident, as was the enrichment of basic residues at P1. To determine the structural basis of this observation, we carried out a series of peptide binding assays and solved the crystal structures of HLA-B*40 in complex with a phosphorylated ligand or its nonphosphorylated counterpart. Overall, our data provide a clear explanation to the common motif found in the phosphopeptidomes associated to different HLA-B molecules. The high prevalence of phosphorylation at P4 is dictated by the presence of the conserved residue Arg62 in the heavy chain, a structural feature shared by most HLA-B alleles. In contrast, the preference for basic residues at P1 is allotype-dependent and might be linked to the structure of the A pocket. This molecular understanding of the presentation of phosphopeptides by HLA-B molecules provides a base for the improved prediction and identification of phosphorylated neo-antigens, as potentially used for cancer immunotherapy.


Journal of Proteome Research | 2017

Arginine (Di)methylated Human Leukocyte Antigen Class I Peptides Are Favorably Presented by HLA-B*07

Fabio Marino; Geert P. M. Mommen; Anita Jeko; Hugo D. Meiring; Jacqueline A. M. van Gaans-van den Brink; Richard A. Scheltema; Cécile A. C. M. van Els; Albert J. R. Heck

Alterations in protein post-translational modification (PTM) are recognized hallmarks of diseases. These modifications potentially provide a unique source of disease-related human leukocyte antigen (HLA) class I-presented peptides that can elicit specific immune responses. While phosphorylated HLA peptides have already received attention, arginine methylated HLA class I peptide presentation has not been characterized in detail. In a human B-cell line we detected 149 HLA class I peptides harboring mono- and/or dimethylated arginine residues by mass spectrometry. A striking preference was observed in the presentation of arginine (di)methylated peptides for HLA-B*07 molecules, likely because the binding motifs of this allele resemble consensus sequences recognized by arginine methyl-transferases. Moreover, HLA-B*07-bound peptides preferentially harbored dimethylated groups at the P3 position, thus consecutively to the proline anchor residue. Such a proline-arginine sequence has been associated with the arginine methyl-transferases CARM1 and PRMT5. Making use of the specific neutral losses in fragmentation spectra, we found most of the peptides to be asymmetrically dimethylated, most likely by CARM1. These data expand our knowledge of the processing and presentation of arginine (di)methylated HLA class I peptides and demonstrate that these types of modified peptides can be presented for recognition by T-cells. HLA class I peptides with mono- and dimethylated arginine residues may therefore offer a novel target for immunotherapy.


Molecular & Cellular Proteomics | 2017

High-throughput and sensitive immunopeptidomics platform reveals profound IFNγ-mediated remodeling of the HLA ligandome

Chloe Chong; Fabio Marino; HuiSong Pak; Julien Racle; Roy Thomas Daniel; Markus Müller; David Gfeller; George Coukos; Michal Bassani-Sternberg

Comprehensive knowledge of the human leukocyte antigen (HLA) class-I and class-II peptides presented to T-cells is crucial for designing innovative therapeutics against cancer and other diseases. However methodologies for their purification for mass-spectrometry analysis have been a major limitation. We designed a novel high-throughput, reproducible and sensitive method for sequential immuno-affinity purification of HLA-I and -II peptides from up to 96 samples in a plate format, suitable for both cell lines and tissues. Our methodology drastically reduces sample-handling and can be completed within five hours. We challenged our methodology by extracting HLA peptides from multiple replicates of tissues (n = 7) and cell lines (n = 21, 108 cells per replicate), which resulted in unprecedented depth, sensitivity and high reproducibility (Pearson correlations up to 0.98 and 0.97 for HLA-I and HLA-II). Because of the methods achieved sensitivity, even single measurements of peptides purified from 107 B-cells resulted in the identification of more than 1700 HLA-I and 2200 HLA-II peptides. We demonstrate the feasibility of performing drug-screening by using ovarian cancer cells treated with interferon gamma (IFNγ). Our analysis revealed an augmented presentation of chymotryptic-like and longer ligands associated with IFNγ induced changes of the antigen processing and presentation machinery. This straightforward method is applicable for basic and clinical applications.

Collaboration


Dive into the Fabio Marino's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Markus Müller

Swiss Institute of Bioinformatics

View shared research outputs
Researchain Logo
Decentralizing Knowledge