Fabio Palomba
University of Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fabio Palomba.
automated software engineering | 2013
Fabio Palomba; Gabriele Bavota; Massimiliano Di Penta; Andrea De Lucia; Denys Poshyvanyk
Code smells represent symptoms of poor implementation choices. Previous studies found that these smells make source code more difficult to maintain, possibly also increasing its fault-proneness. There are several approaches that identify smells based on code analysis techniques. However, we observe that many code smells are intrinsically characterized by how code elements change over time. Thus, relying solely on structural information may not be sufficient to detect all the smells accurately. We propose an approach to detect five different code smells, namely Divergent Change, Shotgun Surgery, Parallel Inheritance, Blob, and Feature Envy, by exploiting change history information mined from versioning systems. We applied approach, coined as HIST (Historical Information for Smell deTection), to eight software projects written in Java, and wherever possible compared with existing state-of-the-art smell detectors based on source code analysis. The results indicate that HISTs precision ranges between 61% and 80%, and its recall ranges between 61% and 100%. More importantly, the results confirm that HIST is able to identify code smells that cannot be identified through approaches solely based on code analysis.
international conference on software engineering | 2015
Michele Tufano; Fabio Palomba; Gabriele Bavota; Massimiliano Di Penta; Andrea De Lucia; Denys Poshyvanyk
Technical debt is a metaphor introduced by Cunningham to indicate “not quite right code which we postpone making it right”. One noticeable symptom of technical debt is represented by code smells, defined as symptoms of poor design and implementation choices. Previous studies showed the negative impact of code smells on the comprehensibility and maintainability of code. While the repercussions of smells on code quality have been empirically assessed, there is still only anecdotal evidence on when and why bad smells are introduced, what is their survivability, and how they are removed by developers. To empirically corroborate such anecdotal evidence, we conducted a large empirical study over the change history of 200 open source projects. This study required the development of a strategy to identify smell-introducing commits, the mining of over half a million of commits, and the manual analysis and classification of over 10K of them. Our findings mostly contradict common wisdom, showing that most of the smell instances are introduced when an artifact is created and not as a result of its evolution. At the same time, 80 percent of smells survive in the system. Also, among the 20 percent of removed instances, only 9 percent are removed as a direct consequence of refactoring operations.
international conference on software maintenance | 2014
Fabio Palomba; Gabriele Bavota; Massimiliano Di Penta; Andrea De Lucia
In the last decade several catalogues have been defined to characterize bad code smells, i.e., symptoms of poor design and implementation choices. On top of such catalogues, researchers have defined methods and tools to automatically detect and/or remove bad smells. Nevertheless, there is an ongoing debate regarding the extent to which developers perceive bad smells as serious design problems. Indeed, there seems to be a gap between theory and practice, i.e., what is believed to be a problem (theory) and what is actually a problem (practice). This paper presents a study aimed at providing empirical evidence on how developers perceive bad smells. In this study, we showed to developers code entities -- belonging to three systems -- affected and not by bad smells, and we asked them to indicate whether the code contains a potential design problem, and if any, the nature and severity of the problem. The study involved both original developers from the three projects and outsiders, namely industrial developers and Masters students. The results provide insights on characteristics of bad smells not yet explored sufficiently. Also, our findings could guide future research on approaches for the detection and removal of bad smells.
international conference on software maintenance | 2015
Fabio Palomba; Mario Linares-Vásquez; Gabriele Bavota; Massimiliano Di Penta; Denys Poshyvanyk; Andrea De Lucia
Nowadays software applications, and especially mobile apps, undergo frequent release updates through app stores. After installing/updating apps, users can post reviews and provide ratings, expressing their level of satisfaction with apps, and possibly pointing out bugs or desired features. In this paper we show-by performing a study on 100 Android apps-how developers addressing user reviews increase their apps success in terms of ratings. Specifically, we devise an approach, named CRISTAL, for tracing informative crowd reviews onto source code changes, and for monitoring the extent to which developers accommodate crowd requests and follow-up user reactions as reflected in their ratings. The results indicate that developers implementing user reviews are rewarded in terms of ratings. This poses the need for specialized recommendation systems aimed at analyzing informative crowd reviews and prioritizing feedback to be satisfied in order to increase the apps success.
Journal of Systems and Software | 2015
Gabriele Bavota; Andrea De Lucia; Massimiliano Di Penta; Fabio Palomba
Abstract Previous studies have investigated the reasons behind refactoring operations performed by developers, and proposed methods and tools to recommend refactorings based on quality metric profiles, or on the presence of poor design and implementation choices, i.e., code smells. Nevertheless, the existing literature lacks observations about the relations between metrics/code smells and refactoring activities performed by developers. In other words, the characteristics of code components increasing/decreasing their chances of being object of refactoring operations are still unknown. This paper aims at bridging this gap. Specifically, we mined the evolution history of three Java open source projects to investigate whether refactoring activities occur on code components for which certain indicators—such as quality metrics or the presence of smells as detected by tools—suggest there might be need for refactoring operations. Results indicate that, more often than not, quality metrics do not show a clear relationship with refactoring. In other words, refactoring operations are generally focused on code components for which quality metrics do not suggest there might be need for refactoring operations. Finally, 42% of refactoring operations are performed on code entities affected by code smells. However, only 7% of the performed operations actually remove the code smells from the affected class.
international conference on program comprehension | 2016
Fabio Palomba; Annibale Panichella; Andrea De Lucia; Andy Zaidman
In this paper, we present TACO (Textual Analysis for Code Smell Detection), a technique that exploits textual analysis to detect a family of smells of different nature and different levels of granularity. We run TACO on 10 open source projects, comparing its performance with existing smell detectors purely based on structural information extracted from code components. The analysis of the results indicates that TACOs precision ranges between 67% and 77%, while its recall ranges between 72% and 84%. Also, TACO often outperforms alternative structural approaches confirming, once again, the usefulness of information that can be derived from the textual part of code components.
international conference on software engineering | 2017
Fabio Palomba; Pasquale Salza; Adelina Ciurumelea; Sebastiano Panichella; Harald C. Gall; Filomena Ferrucci; Andrea De Lucia
Researchers have proposed several approaches to extract information from user reviews useful for maintaining and evolving mobile apps. However, most of them just perform automatic classification of user reviews according to specific keywords (e.g., bugs, features). Moreover, they do not provide any support for linking user feedback to the source code components to be changed, thus requiring a manual, time-consuming, and error-prone task. In this paper, we introduce ChangeAdvisor, a novel approach that analyzes the structure, semantics, and sentiments of sentences contained in user reviews to extract useful (user) feedback from maintenance perspectives and recommend to developers changes to software artifacts. It relies on natural language processing and clustering algorithms to group user reviews around similar user needs and suggestions for change. Then, it involves textual based heuristics to determine the code artifacts that need to be maintained according to the recommended software changes. The quantitative and qualitative studies carried out on 44,683 user reviews of 10 open source mobile apps and their original developers showed a high accuracy of ChangeAdvisor in (i) clustering similar user change requests and (ii) identifying the code components impacted by the suggested changes. Moreover, the obtained results show that ChangeAdvisor is more accurate than a baseline approach for linking user feedback clusters to the source code in terms of both precision (+47%) and recall (+38%).
ieee international conference on software analysis evolution and reengineering | 2017
Dario Di Nucci; Fabio Palomba; Antonio Prota; Annibale Panichella; Andy Zaidman; Andrea De Lucia
Modeling the power profile of mobile applications is a crucial activity to identify the causes behind energy leaks. To this aim, researchers have proposed hardware-based tools as well as model-based and software-based techniques to approximate the actual energy profile. However, all these solutions present their own advantages and disadvantages. Hardware-based tools are highly precise, but at the same time their use is bound to the acquisition of costly hardware components. Model-based tools require the calibration of parameters needed to correctly create a model on a specific hardware device. Software-based approaches do not need any hardware components, but they rely on battery measurements and, thus, they are hardware-assisted. These tools are cheaper and easier to use than hardware-based tools, but they are believed to be less precise. In this paper, we take a deeper look at the pros and cons of software-based solutions investigating to what extent their measurements depart from hardware-based solutions. To this aim, we propose a software-based tool named PETRA that we compare with the hardware-based MONSOON toolkit on 54 Android apps. The results show that PETRA performs similarly to MONSOON despite not using any sophisticated hardware components. In fact, in all the apps the mean relative error with respect to MONSOON is lower than 0.05. Moreover, for 95% of the analyzed methods the estimation error is within 5% of the actual values measured using the hardware-based toolkit.
Journal of Software: Evolution and Process | 2017
Michele Tufano; Fabio Palomba; Gabriele Bavota; Massimiliano Di Penta; Andrea De Lucia; Denys Poshyvanyk
A broken snapshot represents a snapshot from a projects change history that cannot be compiled. Broken snapshots can have significant implications for researchers, as they could hinder any analysis of the past project history that requires code to be compiled. Noticeably, while some broken snapshots may be observable in change history repositories (e.g., no longer available dependencies), some of them may not necessarily happen during the actual development. In this paper, we systematically study the compilability of broken snapshots in 219 395 snapshots belonging to 100 Java projects from the Apache Software Foundation, all relying on Maven as an automated build tool. We investigated broken snapshots from 2 different perspectives: (1) how frequently they happen and (2) likely causes behind them. The empirical results indicate that broken snapshots occur in most (96%) of the projects we studied and that they are mainly due to problems related to the resolution of dependencies. On average, only 38% of the change history of the analyzed systems is currently successfully compilable.
international conference on software engineering | 2012
Gabriele Bavota; Andrea De Lucia; Andrian Marcus; Fabio Palomba
During software evolution changes are inevitable. These changes may lead to design erosion and the introduction of inadequate design solutions, such as design antipatterns. Several empirical studies provide evidence that the presence of antipatterns is generally associated with lower productivity, greater rework, and more significant design efforts for developers. In order to improve the quality and remove antipatterns, refactoring operations are needed. In this demo, we present the Extract class features of ARIES (Automated Refactoring In EclipSe), an Eclipse plug-in that supports the software engineer in removing the “Blob” antipattern.