Fabio Sciarrino
Sapienza University of Rome
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fabio Sciarrino.
Physical Review Letters | 2012
Linda Sansoni; Fabio Sciarrino; Giuseppe Vallone; Paolo Mataloni; Andrea Crespi; Roberta Ramponi; Roberto Osellame
Quantum walk represents one of the most promising resources for the simulation of physical quantum systems, and has also emerged as an alternative to the standard circuit model for quantum computing. Here we investigate how the particle statistics, either bosonic or fermionic, influences a two-particle discrete quantum walk. Such an experiment has been realized by exploiting polarization entanglement to simulate the bunching-antibunching feature of noninteracting bosons and fermions. To this scope a novel three-dimensional geometry for the waveguide circuit is introduced, which allows accurate polarization independent behavior, maintaining remarkable control on both phase and balancement.
Nature Photonics | 2013
Andrea Crespi; Roberto Osellame; Roberta Ramponi; Daniel J. Brod; Ernesto F. Galvão; Nicolò Spagnolo; Chiara Vitelli; Enrico Maiorino; Paolo Mataloni; Fabio Sciarrino
Andrea Crespi, 2 Roberto Osellame, 2, ∗ Roberta Ramponi, 2 Daniel J. Brod, Ernesto F. Galvão, † Nicolò Spagnolo, Chiara Vitelli, 4 Enrico Maiorino, Paolo Mataloni, and Fabio Sciarrino ‡ Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche (IFN-CNR), Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy Instituto de F́ısica, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Niterói, RJ, 24210-340, Brazil Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy Center of Life NanoScience @ La Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena, 255, I-00185 Roma, Italy
Nature Communications | 2011
Andrea Crespi; Roberta Ramponi; Roberto Osellame; Linda Sansoni; Irene Bongioanni; Fabio Sciarrino; Giuseppe Vallone; P. Mataloni
The ability to manipulate quantum states of light by integrated devices may open new perspectives both for fundamental tests of quantum mechanics and for novel technological applications. However, the technology for handling polarization-encoded qubits, the most commonly adopted approach, is still missing in quantum optical circuits. Here we demonstrate the first integrated photonic controlled-NOT (CNOT) gate for polarization-encoded qubits. This result has been enabled by the integration, based on femtosecond laser waveguide writing, of partially polarizing beam splitters on a glass chip. We characterize the logical truth table of the quantum gate demonstrating its high fidelity to the expected one. In addition, we show the ability of this gate to transform separable states into entangled ones and vice versa. Finally, the full accessibility of our device is exploited to carry out a complete characterization of the CNOT gate through a quantum process tomography.
Nature Photonics | 2013
Andrea Crespi; Roberto Osellame; Roberta Ramponi; Vittorio Giovannetti; Rosario Fazio; Linda Sansoni; Francesco De Nicola; Fabio Sciarrino; Paolo Mataloni
Researchers observe Anderson localization for pairs of polarization-entangled photons in a discrete quantum walk affected by position-dependent disorder. By exploiting polarization entanglement of photons to simulate different quantum statistics, they experimentally investigate the interplay between the Anderson localization mechanism and the bosonic/fermionic symmetry of the wave function.
conference on lasers and electro-optics | 2011
Linda Sansoni; Fabio Sciarrino; Giuseppe Vallone; Paolo Mataloni; Andrea Crespi; Roberta Ramponi; Roberto Osellame
We report the realization of an integrated beam splitter able to support polarization-encoded qubits. Using this device, we demonstrate quantum interference with polarization-entangled states and singlet state projection.
Nature Photonics | 2014
Nicolò Spagnolo; Chiara Vitelli; Marco Bentivegna; Daniel J. Brod; Andrea Crespi; Fulvio Flamini; Sandro Giacomini; Giorgio Milani; Roberta Ramponi; Paolo Mataloni; Roberto Osellame; Ernesto F. Galvão; Fabio Sciarrino
Nicolò Spagnolo, Chiara Vitelli, 2 Marco Bentivegna, Daniel J. Brod, Andrea Crespi, 5 Fulvio Flamini, Sandro Giacomini, Giorgio Milani, Roberta Ramponi, 5 Paolo Mataloni, 6 Roberto Osellame, 5, ∗ Ernesto F. Galvão, † and Fabio Sciarrino 6, ‡ Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy Center of Life NanoScience @ La Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena, 255, I-00185 Roma, Italy Instituto de F́ısica, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Niterói, RJ, 24210-340, Brazil Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche (IFN-CNR), Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy Istituto Nazionale di Ottica (INO-CNR), Largo E. Fermi 6, I-50125 Firenze, Italy
Proceedings of SPIE | 2011
Linda Sansoni; Fabio Sciarrino; Giuseppe Vallone; Paolo Mataloni; Andrea Crespi; Roberta Ramponi; Roberto Osellame
The emerging strategy to overcome the limitations of bulk quantum optics consists of taking advantage of the robustness and compactness achievable by the integrated waveguide technology. Here we report the realization of a directional coupler, fabricated by femtosecond laser waveguide writing, acting as an integrated beam splitter able to support polarization encoded qubits. This maskless and single step technique allows to realize circular transverse waveguide profiles able to support the propagation of Gaussian modes with any polarization state. Using this device, we demonstrate the quantum interference with polarization entangled states.
Nature Communications | 2013
Vincenzo D'Ambrosio; Nicolò Spagnolo; Lorenzo Del Re; Sergei Slussarenko; Ying Li; Leong Chuan Kwek; Lorenzo Marrucci; S. P. Walborn; Leandro Aolita; Fabio Sciarrino
Quantum metrology bears a great promise in enhancing measurement precision, but is unlikely to become practical in the near future. Its concepts can nevertheless inspire classical or hybrid methods of immediate value. Here we demonstrate NOON-like photonic states of m quanta of angular momentum up to m=100, in a setup that acts as a ‘photonic gear’, converting, for each photon, a mechanical rotation of an angle θ into an amplified rotation of the optical polarization by mθ, corresponding to a ‘super-resolving’ Malus’ law. We show that this effect leads to single-photon angular measurements with the same precision of polarization-only quantum strategies with m photons, but robust to photon losses. Moreover, we combine the gear effect with the quantum enhancement due to entanglement, thus exploiting the advantages of both approaches. The high ‘gear ratio’ m boosts the current state of the art of optical non-contact angular measurements by almost two orders of magnitude.
Nature | 2002
F. De Martini; V. Bu zcaron; ek; Fabio Sciarrino; C. Sias
In classical computation, a ‘bit’ of information can be flipped (that is, changed in value from zero to one and vice versa) using a logical NOT gate; but the quantum analogue of this process is much more complicated. A quantum bit (qubit) can exist simultaneously in a superposition of two logical states with complex amplitudes, and it is impossible to find a universal transformation that would flip the original superposed state into a perpendicular state for all values of the amplitudes. But although perfect flipping of a qubit prepared in an arbitrary state (a universal NOT operation) is prohibited by the rules of quantum mechanics, there exists an optimal approximation to this procedure. Here we report the experimental realization of a universal quantum machine that performs the best possible approximation to the universal NOT transformation. The system adopted was an optical parametric amplifier of entangled photon states, which also enabled us to investigate universal quantum cloning.
Science Advances | 2015
Marco Bentivegna; Nicolò Spagnolo; Chiara Vitelli; Fulvio Flamini; Niko Viggianiello; Ludovico Latmiral; Paolo Mataloni; Daniel J. Brod; Ernesto F. Galvão; Andrea Crespi; Roberta Ramponi; Roberto Osellame; Fabio Sciarrino
A novel experiment supports quantum computation using photonic circuits to greatly increase quantum device speed. Boson sampling is a computational task strongly believed to be hard for classical computers, but efficiently solvable by orchestrated bosonic interference in a specialized quantum computer. Current experimental schemes, however, are still insufficient for a convincing demonstration of the advantage of quantum over classical computation. A new variation of this task, scattershot boson sampling, leads to an exponential increase in speed of the quantum device, using a larger number of photon sources based on parametric down-conversion. This is achieved by having multiple heralded single photons being sent, shot by shot, into different random input ports of the interferometer. We report the first scattershot boson sampling experiments, where six different photon-pair sources are coupled to integrated photonic circuits. We use recently proposed statistical tools to analyze our experimental data, providing strong evidence that our photonic quantum simulator works as expected. This approach represents an important leap toward a convincing experimental demonstration of the quantum computational supremacy.