Fabio Sparatore
University of Genoa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fabio Sparatore.
Drug Discovery Today | 2009
Angela Alama; Bruno Tasso; Federica Novelli; Fabio Sparatore
Since the introduction of cisplatin in cancer therapy, metal complexes and organometallic compounds have been gaining growing importance in oncology. The impressive clinical effectiveness of cisplatin is limited by significant side effects and the emergence of drug resistance. Thus, novel classic and unconventional Pt(II) and Pt(IV) complexes have been introduced in therapy or are presently in advanced clinical trials. Moreover, innovative non-platinum metal-based antitumor agents, whose activity does not rely on direct DNA damage and may involve proteins and enzymes, have been developed. Gold and tin derivatives are enjoying an increasing interest and appear very promising as potential drug candidates.
Farmaco | 2003
Caterina Canu Boido; Bruno Tasso; Vito Boido; Fabio Sparatore
Neuronal nicotinic acetylcholine receptors (nAChRs) form a family of ACh-gated cation channels made up of different subtypes. They are widely distributed in peripheral and central nervous systems and are involved in complex cerebral processes as learning, memory, nociception, movement, etc. The possibility that subtype-selective ligands be used in the treatment of CNS disorders promoted the synthesis of a large number of structural analogues of nicotine and epibatidine, two very potent nAChR agonists. Pursuing our long standing research on the structural modification of quinolizidine alkaloids, we devoted our attention to cytisine, another very potent ligand for many nAChR subtypes. Thus a systematic structural modification of cytisine was undertaken in order to obtain compounds of potential therapeutic interest at peripheral as well as central level, with a particular concern for achieving nAChR subtype selective ligands. Up to the present more than 80 cytisine derivatives, mainly of N-substitution and a few by modifying the pyridone ring, have been prepared. The biological results, which concern so far about an half of the prepared compounds, indicate that the introduction of a nitro group in position 3 of the pyridone nucleus further enhances the high affinity of cytisine, while the introduction of substituents on the basic nitrogen, though reducing in different degrees the affinity, gives rise to compounds with a higher selectivity for central (alpha(4)beta(2)) versus gangliar (alpha(3)-containing) receptor subtype. On the other hand, the analgesic, antihypertensive and inotropic activities found in some N-substituted cytisines, represent an attractive starting point for the development of more active compounds.
Bioorganic & Medicinal Chemistry | 2010
Michele Tonelli; Matteo Simone; Bruno Tasso; Federica Novelli; Vito Boido; Fabio Sparatore; Giuseppe Paglietti; Sabrina Pricl; Gabriele Giliberti; Sylvain Blois; Cristina Ibba; Giuseppina Sanna; Roberta Loddo; Paolo La Colla
Seventy-six 2-phenylbenzimidazole derivatives were synthesized and evaluated in cell-based assays for cytotoxicity and antiviral activity against a panel of 10 RNA and DNA viruses. The most commonly affected viruses were, in decreasing order, CVB-2, BVDV, Sb-1, HSV-1, and YFV, while HIV-1 and VSV were not affected, and RSV, VV and Reo-1 were only susceptible to a few compounds. Thirty-nine compounds exhibited high activity (EC(50)=0.1-10microM) against at least one virus, and four of them were outstanding for their high and selective activity against VV (24, EC(50)=0.1microM) and BVDV (50, 51, and 53 with EC(50)=1.5, 0.8, and 1.0microM, respectively). The last compounds inhibited at low micromolar concentrations the NS5B RdRp of BVDV and also of HCV, the latter sharing structural similarity with the former. The considered compounds represent attractive leads for the development of antiviral agents against poxviruses, pestiviruses and even HCV, which are important human and veterinary pathogens.
Farmaco | 1999
Caterina Canu Boido; Fabio Sparatore
Thirty-one N-derivatives of cytisine were prepared in order to modify its pharmacological profile and to obtain compounds of potential therapeutic interest either at a peripheral or central level, particularly as nicotinic ligands with improved ability to cross the blood-brain barrier. Actually, with the introduction of different kinds of substituent on the basic nitrogen of cytisine a variety of activities were observed, both in vivo (analgesic, dopamine antagonism, antihypertensive, inhibition of stress-induced ulcers, antiinflammatory, protection from PAF-induced mortality, hypoglycemic) and in vitro (positive cardio-inotropic, beta-adrenergic antagonism, alpha 1- and alpha 2-antagonism, inhibition of PAF-induced platelet aggregation). Six randomly selected compounds were tested for the ability to recognize a central nicotinic receptor and four of them exhibited Ki values in the range 30-163 nM.
Farmaco | 1999
Federica Novelli; Marco Recine; Fabio Sparatore; Claudia Clelia Assunta Juliano
Seven gold complexes were prepared and investigated for biocidal activity against Gram-positive and -negative bacteria, fungi and protozoa. All of them were active against the tested microorganisms with the exception of Pseudomonas aeruginosa. In many, cases minimum inhibitory concentrations (MIC) were well below 1 microgram/ml. The activity is not simply related to the gold content, but also to the nature of both the phosphine and the aminothiol to which the metal is bound.
Bioorganic & Medicinal Chemistry | 2009
Michele Tonelli; Iana Vazzana; Bruno Tasso; Vito Boido; Fabio Sparatore; Maurizio Fermeglia; Maria Silvia Paneni; Paola Posocco; Sabrina Pricl; Paolo La Colla; Cristina Ibba; Barbara Secci; Gabriella Collu; Roberta Loddo
Abstract Twelve aminoarylazocompounds (A–C) and 46 aryltriazene 7 derivatives (D–G) have been synthesized and evaluated in cell-based assays for cytotoxicity and antiviral activity against a panel of 10 RNA and DNA viruses. Eight aminoazocompounds and 27 aryltriazene derivatives exhibited antiviral activity, sometimes of high level, against one or more viruses. A marked activity against BVDV and YFV was prevailing among the former compounds, while the latter type of compounds affected mainly CVB-2 and RSV. None of the active compounds inhibited the multiplication of HIV-1, VSV and VV. Arranged in order of decreasing potency and selectivity versus the host cell lines, the best compounds are the following; BVDV: 1 > 7 > 8 > 4; YFV: 7 > 5; CVB-2: 25 > 56 > 18; RSV: 14 > 20 > 55 > 38 > 18 > 19; HSV-1: 2. For these compounds the EC50 ranged from 1.6μM (1) to 12μM (18), and the S. I. from 19.4 (1) to 4.2 (2). Thus the aminoarylazo and aryltriazene substructures appear as interesting molecular component for developing antiviral agents against ss RNA viruses, particularly against RSV and BVDV, which are important human and veterinary pathogens. Finally, molecular modeling investigations indicated that compounds of structure A–C, active against BVDV, could work targeting the viral RNA-dependent RNA-polymerase (RdRp), having been observed a good agreement between the trends of the estimated IC50 and the experimental EC50 values.
European Journal of Pharmacology | 2003
Eric Carbonnelle; Fabio Sparatore; Caterina Canu-Boido; Cristian Salvagno; Barbara Baldani-Guerra; Georg C. Terstappen; Ruud Zwart; Henk P.M. Vijverberg; Francesco Clementi; Cecilia Gotti
Cytisine very potently binds and activates the alpha 3 beta 4 and alpha 7 nicotinic subtypes, but only partially agonises the alpha 4 beta 2 subtype. Although with a lower affinity than cytisine, new cytisine derivatives with different substituents on the basic nitrogen (CC1-CC8) bind to both the heteromeric and homomeric subtypes, with higher affinity for brain [3H]epibatidine receptors. The cytisine derivatives were tested on the Ca(2+) flux of native or transfected cell lines expressing the rat alpha 7, or human alpha 3 beta 4 or alpha 4 beta 2 subtypes using Ca(2+) dynamics in conjunction with a fluorescent image plate reader. None elicited any response at doses of up to 30-100 microM, but all inhibited agonist-induced responses. Compounds CC5 and CC7 were also electrophysiologically tested on oocyte-expressed rat alpha 4 beta 2, alpha 3 beta 4 and alpha 7 subtypes. CC5 competitively antagonised the alpha 4 beta 2 and alpha 3 beta 4 subtypes with similar potency, whereas CC7 only partially agonised them with maximum responses of respectively 3% and 11% of those of 1 mM acetylcholine. Neither compound induced any current in the oocyte-expressed alpha 7 subtype, and both weakly inhibited acetylcholine-induced currents. Adding chemical groups of a different class or size to the basic nitrogen of cytisine leads to compounds that lose full agonist activity on the alpha 3 beta 4 and alpha 7 subtypes.
Chemistry & Biodiversity | 2008
Michele Tonelli; Giuseppe Paglietti; Vito Boido; Fabio Sparatore; Fabio Marongiu; Esther Marongiu; Paolo La Colla; Roberta Loddo
Forty‐three 2‐[(benzotriazol‐1/2‐yl)methyl]benzimidazoles, bearing either linear (dialkylamino)alkyl‐ or bulkier (quinolizidin‐1‐yl)alkyl moieties at position 1, were evaluated in cell‐based assays for cytotoxicity and antiviral activity against viruses representative of two of the three genera of the Flaviviridae family, i.e. Flaviviruses (Yellow Fever Virus (YFV)) and Pestiviruses (Bovine Viral Diarrhoea Virus (BVDV)), as Hepaciviruses can hardly be used in routine cell‐based assays. Compounds were also tested against representatives of other virus families. Among ssRNA+ viruses were a retrovirus (Human Immunodeficiency Virus type 1 (HIV‐1)), two picornaviruses (Coxsackie Virus type B2 (CVB2), and Poliovirus type‐1, Sabin strain (Sb‐1)); among ssRNA− viruses were a Paramyxoviridae (Respiratory Syncytial Virus (RSV)) and a Rhabdoviridae (Vesicular Stomatitis Virus (VSV)) representative. Among double‐stranded RNA (dsRNA) viruses was a Reoviridae representative (Reo‐1). Two representatives of DNA virus families were also included: Herpes Simplex type 1, (HSV‐1; Herpesviridae) and Vaccinia Virus (VV; Poxviridae). Most compounds exhibited potent activity against RSV, with EC50 values as low as 20 nM. Moreover, some compounds, in particular when bearing a (quinolizidin‐1‐yl)alkyl residue, were also moderately active against BVDV, YFV, and CVB2.
Bioorganic & Medicinal Chemistry | 2005
Anna Sparatore; Nicoletta Basilico; Silvia Parapini; Sergio Romeo; Federica Novelli; Fabio Sparatore; Donatella Taramelli
A set of quinolizidinyl and quinolizidinylalkyl derivatives of 4-amino-7-chloroquinoline and of 9-amino-6-chloro-2-methoxyacridine were prepared and tested in vitro against CQ-sensitive (D-10) and CQ-resistant (W-2) strains of Plasmodium falciparum. All compounds but one exerted significant antimalarial activity. Some of the quinolizidine derivatives were from 5 to 10 times more active than chloroquine on the CQ-resistant strain. No toxicity against mammalian cells was observed.
Farmaco | 2002
O. Nicolotti; C. Canu Boido; Fabio Sparatore; A. Carotti
A number of new N-substituted cytisine derivatives were prepared and tested, along with similar compounds already described by us and others, as high affinity neuronal acetylcholine receptor ligands. Structure-affinity relationships were discussed in the light of our recently proposed pharmacophore model for nicotinic receptor agonists. The most significant physicochemical interactions modulating the receptor-ligand binding were detected at the three dimensional (3D) level by means of comparative molecular field analysis (CoMFA). The best predictive PLS model was a single-field steric model showing good statistical figures: n = 17, Q2 = 0.717, s(ev) = 0.566, r2 = 0.942, s = 0.275.