Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabio Speranza is active.

Publication


Featured researches published by Fabio Speranza.


Tectonophysics | 2002

Age of the Corsica–Sardinia rotation and Liguro–Provençal Basin spreading: new paleomagnetic and Ar/Ar evidence

Fabio Speranza; Igor M. Villa; Leonardo Sagnotti; Fabio Florindo; Domenico Cosentino; Paola Cipollari; Massimo Mattei

Abstract The age of spreading of the Liguro–Provencal Basin is still poorly constrained due to the lack of boreholes penetrating the whole sedimentary sequence above the oceanic crust and the lack of a clear magnetic anomaly pattern. In the past, a consensus developed over a fast (20.5–19 Ma) spreading event, relying on old paleomagnetic data from Oligo–Miocene Sardinian volcanics showing a drift-related 30° counterclockwise (CCW) rotation. Here we report new paleomagnetic data from a 10-m-thick lower–middle Miocene marine sedimentary sequence from southwestern Sardinia. Ar/Ar dating of two volcanoclastic levels in the lower part of the sequence yields ages of 18.94±0.13 and 19.20±0.12 Ma (lower–mid Burdigalian). Sedimentary strata below the upper volcanic level document a 23.3±4.6° CCW rotation with respect to Europe, while younger strata rapidly evolve to null rotation values. A recent magnetic overprint can be excluded by several lines of evidence, particularly by the significant difference between the in situ paleomagnetic and geocentric axial dipole (GAD) field directions. In both the rotated and unrotated part of the section, only normal polarity directions were obtained. As the global magnetic polarity time scale (MPTS) documents several geomagnetic reversals in the Burdigalian, a continuous sedimentary record would imply that (unrealistically) the whole documented rotation occurred in few thousands years only. We conclude that the section contains one (or more) hiatus(es), and that the minimum age of the unrotated sediments above the volcanic levels is unconstrained. Typical back-arc basin spreading rates translate to a duration ≥3 Ma for the opening of the Liguro–Provencal Basin. Thus, spreading and rotation of Corsica–Sardinia ended no earlier than 16 Ma (early Langhian). A 16–19 Ma, spreading is corroborated by other evidences, such as the age of the breakup unconformity in Sardinia, the age of igneous rocks dredged west of Corsica, the heat flow in the Liguro–Provencal Basin, and recent paleomagnetic data from Sardinian sediments and volcanics. Since Corsica was still rotating/drifting eastward at 16 Ma, it presumably induced significant shortening to the east, in the Apennine belt. Therefore, the lower Miocene extensional basins in the northern Tyrrhenian Sea and margins can be interpreted as synorogenic “intra-wedge” basins due to the thickening and collapse of the northern Apennine wedge.


Geology | 2006

Ultrafast oceanic spreading of the Marsili Basin, southern Tyrrhenian Sea: Evidence from magnetic anomaly analysis

Iacopo Nicolosi; Fabio Speranza; Massimo Chiappini

Spectral analysis of both shipborne and airborne magnetic maps of the southern Tyrrhenian Sea reveals seven subparallel positive-negative magnetic anomaly stripes over the flat-lying deep floor of the Marsili oceanic basin. This represents the first evidence of oceanic magnetic anomalies in the Tyrrhenian Sea. The central positive stripe is along the Marsili seamount, a superinflated spreading ridge located at the basin axis. The stratigraphy of Ocean Drilling Program Site 650 and K/Ar ages from the Marsili seamount suggest that the Marsili Basin opened at the remarkable full-spreading rate of ∼19 cm/ yr between ca. 1.6 and 2.1 Ma about the Olduvai subchron. This is the highest spreading rate ever documented, including that observed at the Cocos-Pacific plate boundary. Renewed but slow spreading during the Brunhes chron (after 0.78 Ma), coupled with huge magmatic inflation, gave rise to the Marsili volcano. Our new data and interpretation show that backarc spreading of the Tyrrhenian Sea was episodic, with sudden rapid pulses punctuating relatively long periods of tectonic quiescence.


Physics of the Earth and Planetary Interiors | 1998

Magnetic fabric of clay sediments from the external northern Apennines (Italy)

Leonardo Sagnotti; Fabio Speranza; Aldo Winkler; Massimo Mattei; R Funiciello

Abstract We report on the anisotropy of magnetic susceptibility (AMS) analyses of fine-grained sediments deposited during the Messinian in foredeep basins at the front of the northern Apenninic chain. The data refer to 32 sampling sites, mostly distributed in the fine-grained intervals of the Laga and Colombacci formations, extending along the belt for a total length of about 300 km. Rock magnetism analyses indicate that the magnetic susceptibility and its anisotropy are in most cases dominated by the paramagnetic minerals of the clay matrix. In order to delineate the contribution of the ferrimagnetic fraction to the overall susceptibility fabric, the anisotropy of the anhysteretic remanent magnetisation was investigated at some representative sites. The magnetic fabric of the studied sediments mostly reflects the effects of compaction, showing a predominant magnetic foliation parallel to the bedding plane. At all the sites a well distinct magnetic lineation was also found, which is parallel to the fold axes and thrust fronts, both at local and regional scales. This feature is maintained in sequences that differ for sedimentological character and age, implying that the magnetic lineation was produced by a mild tectonic overprint of the primary sedimentary-compactional fabric. The relationship between the magnetic lineation trends and the vertical axis rotations detected by Speranza et al. [Speranza, F., Sagnotti, L., Mattei, M., 1997. J. Geophys. Res. 102, 3153–3166] indicates that the magnetic lineation formed during the compressive phases of the Messinian-early Pliocene, when the Apenninic front was almost rectilinear and oriented N320°.


Journal of Geophysical Research | 1997

Tectonics of the Umbria-Marche-Romagna Arc (central northern Apennines, Italy): New paleomagnetic constraints

Fabio Speranza; Leonardo Sagnotti; Massimo Mattei

We present the results of a paleomagnetic study carried out on 32 sites from mainly Messinian clayey sediments distributed throughout the external Umbria-Marche-Romagna Arc (UMRA). These data, together with published results from coeval sediments, demonstrate that this arc is an orocline in its central northern sector. Bending, not well constrained in time, was due to about 15° clockwise rotations of the central part of this arc and to counterclockwise rotations farther north. In this latter area, post-Messinian counterclockwise rotations are of the same amplitude as those calculated for some classic Mesozoic paleomagnetic sections in northern Umbria, suggesting a Plio-Pleistocene age for the rotations reported from the older sequences.


Tectonics | 1999

Timing and magnitude of rotations in the frontal thrust systems of southwestern Sicily

Fabio Speranza; Rosanna Maniscalco; Massimo Mattei; A Di Stefano; Robert W.H. Butler; R Funiciello

We report new paleomagnetic and anisotropy of magnetic susceptibility (AMS) results from upper Tortonian to middle Pleistocene sediments which were deposited upon and adjacent to active thrust structures in southwestern Sicily. The data show that the Plio-Pleistocene sediments from the Belice and Menfi basins (covering the Saccense shelf limestones) underwent any internal shortening after the early Pleistocene (Santernian), as well as any net rotation. Sediments around this area (which overlie basinal Meso-Cenozoic successions) record systematic rotations: one upper Tortonian site to the west is ∼30° counterclockwise rotated, while to the east, lower Pliocene to middle lower Pleistocene sites within the Gela Nappe domain show 25° to 56° clockwise (CW) rotations. These data show that the ductile basinal sediments were bent and rotated around the rigid Saccense carbonates during the thin-skinned southward propagation of the orogenic front. We document here that the coastal sediments from the southwestern Gela Nappe underwent both a post middle early Pleistocene ∼30°CW rotation and a post middle Pleistocene E–W to ESE–WNW flattening (revealed by AMS). Our data then constrain to the late Pleistocene-Holocene the age of the last shortening episode occurring in the southwestern Gela Nappe front. Pleistocene rotations of similar amount also characterize the Sicanian domain, implying that it was incorporated in the Gela Nappe wedge during the recentmost episodes of deformation. This evidence allows us to better understand the very large (up to 114°) post Mesozoic rotations reported by Channell et al. [1980, 1990] for the Sicanian limestones, as related to both Miocene (or older?) deformational episodes and the Plio-Pleistocene evolution of the Gela Nappe.


Earth and Planetary Science Letters | 2002

Paleomagnetism of Jurassic to Miocene sediments from the Apenninic carbonate platform (southern Apennines, Italy): evidence for a 60° counterclockwise Miocene rotation

Jérôme Gattacceca; Fabio Speranza

Abstract The tectonic evolution of the Apennine belt/southern Tyrrhenian Sea system is addressed through a paleomagnetic study of Lias to Langhian sediments from the Apenninic carbonate platform (southern Apennines, Italy). Reliable paleomagnetic data gathered from 21 sites document a regional-scale post-Langhian 80° counterclockwise (CCW) rotation. Since previous studies of the Plio–Pleistocene clays spread over the orogen had shown a ∼20°CCW rotation, we conclude that the southern Apennines rotated by 60° during Middle–Late Miocene. Our data provide evidence that the southeastward drift of Calabrian block (and synchronous spreading of the southern Tyrrhenian Sea) induced ‘saloon door’ like deformation of the southern Apennines and Sicily, which underwent similar magnitude (although opposite in sign) orogenic rotations. A paleomagnetically derived paleogeographic reconstruction shows that at 15 Ma (Late Langhian) the Alpine–Apennine belt collided with a NNE-oriented carbonate platform corridor surrounded by oceanic basins. We speculate that both the end of the Corsica–Sardinia rotation and the eastward jump of the locus of back-arc extension (from the Liguro-Provencal to the Tyrrhenian Sea) may have been consequences of this event.


Journal of the Geological Society | 2003

Pattern of orogenic rotations in central–eastern Sicily: implications for the timing of spreading in the Tyrrhenian Sea

Fabio Speranza; Rosanna Maniscalco; Mario Grasso

New palaeomagnetic data from upper Triassic to Pliocene sediments reveal that in eastern Sicily a major 70° clockwise (CW) rotation took place between Oligocene and late Tortonian time, followed by a further 30° CW rotation. Results from central Sicily are less coherent. They show 44–83° post-Oligocene CW rotation, local 14° post-late Tortonian counterclockwise (CCW) rotation, and 25° post-mid-Pliocene CW rotation. We interpret the larger CW rotation observed in eastern Sicily as related to a more internal palaeogeographical position with respect to central Sicily. Our results complement pre-existing data from the northwestern Sicily carbonates, and indicate that all the internal carbonate nappes coherently rotated by c. 100° CW during tectonic emplacement, implying a west-to-east increase of shortening in the Sicilian Maghrebian belt. In Sicily, compressive deformation started during the Langhian, i.e. just after the deposition of the upper Oligocene–upper Burdigalian Numidian Flysch turbidites. Therefore the age of the older 70° palaeomagnetic rotation (synchronous to the thrusting) is constrained to occur between the Langhian and late Tortonian. Furthermore, by considering a maximum possible rotation rate of 20° Ma−1, we infer that CW rotation started in Sicily in Langhian–Serravallian times, between 15–16 and 11–12 Ma ago. The 100° CW rotation observed in pre-orogenic strata from the whole of Sicily is mirrored by 80° orogen-scale CCW rotations characterizing the internal southern Apennines. Palaeomagnetism therefore shows that during orogenesis, the southern Apennines and the Sicilian Maghrebides rotated in a ‘saloon-door’ fashion, synchronous to back-arc spreading of the southern Tyrrhenian Sea. Consequently, our palaeomagnetic data suggest that the southern Tyrrhenian back-arc basin started to spread during Langhian–Serravallian times (from 15–16 to 11–12 Ma), significantly earlier than the late Tortonian age (8 Ma) suggested so far by oceanic drilling data.


Tectonophysics | 2002

Extensional tectonics on Sardinia (Italy): insights into the arc–back-arc transitional regime

Claudio Faccenna; Fabio Speranza; Francesca D’Ajello Caracciolo; Massimo Mattei; Giacomo Oggiano

Although the tectonic features and stress regime typical for accretionary complexes and back-arc domains have been widely documented so far, few are known on the transitional zone separating these two systems. Here we report on structural analysis and anisotropy of magnetic susceptibility (AMS) results from Eocene–Pliocene sediments exposed in western Sardinia. From late Oligocene to middle Miocene, the studied area was located between the Alpine–Apennine wedge to the east, which was undergoing shortening and accretion, and the Liguro–Provencal basin, undergoing extension and spreading. We find that, prior to the formation of the Liguro–Provencal basin, the middle Eocene–lower Oligocene sediments cropping out at the southwesternmost edge of Sardinia were subjected to NE–SW shortening (in present-day coordinates), in agreement with recently reported geological information. Conversely, the upper Oligocene–Pliocene sedimentary sequences record a different evolutionary stage of extensional processes. Upper Oligocene–middle–upper Burdigalian sediments clearly show a N–S-oriented magnetic lineation that can be related to extensional direction along the prevalent E–W-oriented normal faults. On the other hand, no magnetic lineation has been detected in upper Burdigalian–Serravallian sediments, which mark the end of the first rifting process in Sardinia, which likely coincides with the rift-to-drift transition at the core of the Liguro–Provencal basin. Finally, a NE–SW extension is observed in two Tortonian–Pliocene sites at the northwestern margin of the NNW–SSE-oriented Campidano graben. Our study confirms that AMS may represent a valuable strain-trajectory proxy and significantly help to unravel the characters of temporally superimposed tectonic events.


Tectonophysics | 1999

Extensional tectonics in the Amantea basin (Calabria, Italy): a comparison between structural and magnetic anisotropy data

Massimo Mattei; Fabio Speranza; Alessio Argentieri; Federico Rossetti; Leonardo Sagnotti; R Funiciello

Abstract We report on structural and anisotropy of magnetic susceptibility (AMS) results from the Upper Miocene sediments of the Amantea basin, located on the Tyrrhenian coast of the Calabrian Arc (Southern Italy). The stratigraphic succession of the basin is organized in three depositional sequences, separated by two major angular unconformities. Detailed geological mapping and structural analysis demonstrate that the stratigraphic evolution of the Amantea basin is strongly controlled by a synsedimentary extensional tectonic regime. Several NNE-SSW-trending normal fault arrays with large scatter in inclination values have been interpreted as due to a domino faulting mechanism, consistent with a WNW-ESE stretching direction. AMS data have been obtained for 13 sites, both in the not constrained in age first depositional sequence (3 sites), and in the upper Tortonian-lower Messinian clays from the second depositional sequence (10 sites). All the sites show a strong magnetic foliation parallel to the bedding planes, and a well defined magnetic lineation subparallel to the local bedding dip directions. The magnetic lineations cluster around a WNW-ESE trend and are parallel to the stretching directions inferred by fault-slip analysis and basin architecture. These new data then confirm the possibility to use the magnetic lineation to map the strain trajectory in weakly deformed extensional sedimentary basins. Paleomagnetic data (from previous studies) show that the whole Calabrian block underwent a 15°–20° clockwise rotation probably in the Pleistocene, postdating the extensional tectonic events which controlled the Amantea basin geometry. Therefore we suggest for the Amantea basin an original E-W-oriented stretching direction, which may be considered as the older extensional direction characterizing the Late Miocene evolution of the southern Tyrrhenian Sea domain.


Journal of the Geological Society | 2006

Testing thrust tectonic models at mountain fronts : where has the displacement gone?

R.S.J. Tozer; R. W. H. Butler; M. Chiappini; Sveva Corrado; S. Mazzoli; Fabio Speranza

The alternative relationships that can exist between a mountain front and the adjacent foreland basin have been recognized for many years. However, seismic reflection data from such areas are commonly of poor quality and therefore structural models may contain large uncertainties. In view of scientific and commercial interest in mountain belts, we have reviewed the methods for discriminating between alternative interpretations using a case study from the Montagna dei Fiori in the central Apennines, Italy. In this area Mesozoic and Tertiary carbonate sediments are juxtaposed with a foredeep basin containing up to 7 km of Messinian and Plio-Pleistocene siliciclastic sediments. A new structural model for this area demonstrates how the structures in this area form a kinematically closed system in which displacement is transferred from the thrust belt to blind structures beneath the present-day foreland. Growth strata show that Pliocene shortening was initially rapid (15 mm a−1) followed by slower rates during the final stages of deformation. Variations in structural elevation indicate a component of basement involvement during thrusting, and this is further supported by magnetic modelling. The results illustrate the interaction of thin- and thick-skinned structures in the central Apennines, and the methods for discriminating between alternative structural models.

Collaboration


Dive into the Fabio Speranza's collaboration.

Top Co-Authors

Avatar

Liliana Minelli

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge