Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabio Sterpone is active.

Publication


Featured researches published by Fabio Sterpone.


Chemical Reviews | 2015

Amyloid β Protein and Alzheimer’s Disease: When Computer Simulations Complement Experimental Studies

Jessica Nasica-Labouze; Phuong H. Nguyen; Fabio Sterpone; Olivia Berthoumieu; Nicolae-Viorel Buchete; Sébastien Côté; Alfonso De Simone; Andrew J. Doig; Peter Faller; Angel E. Garcia; Alessandro Laio; Mai Suan Li; Simone Melchionna; Normand Mousseau; Yuguang Mu; Anant K. Paravastu; Samuela Pasquali; David J. Rosenman; Birgit Strodel; Bogdan Tarus; John H. Viles; Tong Zhang; Chunyu Wang; Philippe Derreumaux

Simulations Complement Experimental Studies Jessica Nasica-Labouze,† Phuong H. Nguyen,† Fabio Sterpone,† Olivia Berthoumieu,‡ Nicolae-Viorel Buchete, Sebastien Cote, Alfonso De Simone, Andrew J. Doig, Peter Faller,‡ Angel Garcia, Alessandro Laio, Mai Suan Li, Simone Melchionna, Normand Mousseau, Yuguang Mu, Anant Paravastu, Samuela Pasquali,† David J. Rosenman, Birgit Strodel, Bogdan Tarus,† John H. Viles, Tong Zhang,†,▲ Chunyu Wang, and Philippe Derreumaux*,†,□ †Laboratoire de Biochimie Theorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Universite Paris Diderot, Sorbonne Paris Cite, 13 rue Pierre et Marie Curie, 75005 Paris, France ‡LCC (Laboratoire de Chimie de Coordination), CNRS, Universite de Toulouse, Universite Paul Sabatier (UPS), Institut National Polytechnique de Toulouse (INPT), 205 route de Narbonne, BP 44099, Toulouse F-31077 Cedex 4, France School of Physics & Complex and Adaptive Systems Laboratory, University College Dublin, Belfield, Dublin 4, Ireland Deṕartement de Physique and Groupe de recherche sur les proteines membranaires (GEPROM), Universite de Montreal, C.P. 6128, succursale Centre-ville, Montreal, Quebec H3C 3T5, Canada Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom Department of Physics, Applied Physics, & Astronomy, and Department of Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States The International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam Instituto Processi Chimico-Fisici, CNR-IPCF, Consiglio Nazionale delle Ricerche, 00185 Roma, Italy School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore Department of Chemical and Biomedical Engineering, Florida A&M University-Florida State University (FAMU-FSU) College of Engineering, 2525 Pottsdamer Street, Tallahassee, Florida 32310, United States National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Julich GmbH, 52425 Julich, Germany School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom Institut Universitaire de France, 75005 Paris, France


Annual Review of Physical Chemistry | 2011

Reorientation and Allied Dynamics in Water and Aqueous Solutions

Damien Laage; Fabio Sterpone; Rossend Rey; James T. Hynes

The reorientation of a water molecule is important for a host of phenomena, ranging over--in an only partial listing--the key dynamic hydrogen-bond network restructuring of water itself, aqueous solution chemical reaction mechanisms and rates, ion transport in aqueous solution and membranes, protein folding, and enzymatic activity. This review focuses on water reorientation and related dynamics in pure water, and for aqueous solutes with hydrophobic, hydrophilic, and amphiphilic character, ranging from tetra-methylurea to halide ions and amino acids. Attention is given to the application of theory, simulation, and experiment in the probing of these dynamics, in usefully describing them, and in assessing the description. Special emphasis is placed on a novel sudden, large-amplitude jump mechanism for water reorientation, which contrasts with the commonly assumed Debye rotational diffusion mechanism, characterized by small-amplitude angular motion. Some open questions and directions for further research are also discussed.


Chemical Reviews | 2016

Water Determines the Structure and Dynamics of Proteins

Marie-Claire Bellissent-Funel; Ali Hassanali; Martina Havenith; Richard H. Henchman; Peter Pohl; Fabio Sterpone; David van der Spoel; Yao Xu; Angel E. Garcia

Water is an essential participant in the stability, structure, dynamics, and function of proteins and other biomolecules. Thermodynamically, changes in the aqueous environment affect the stability of biomolecules. Structurally, water participates chemically in the catalytic function of proteins and nucleic acids and physically in the collapse of the protein chain during folding through hydrophobic collapse and mediates binding through the hydrogen bond in complex formation. Water is a partner that slaves the dynamics of proteins, and water interaction with proteins affect their dynamics. Here we provide a review of the experimental and computational advances over the past decade in understanding the role of water in the dynamics, structure, and function of proteins. We focus on the combination of X-ray and neutron crystallography, NMR, terahertz spectroscopy, mass spectroscopy, thermodynamics, and computer simulations to reveal how water assist proteins in their function. The recent advances in computer simulations and the enhanced sensitivity of experimental tools promise major advances in the understanding of protein dynamics, and water surely will be a protagonist.


Journal of the American Chemical Society | 2012

Magnitude and Molecular Origin of Water Slowdown Next to a Protein

Fabio Sterpone; Damien Laage

Hydration shell dynamics plays a critical role in protein folding and biochemical activity and has thus been actively studied through a broad range of techniques. While all observations concur with a slowdown of water dynamics relative to the bulk, the magnitude and molecular origin of this retardation remain unclear. Via numerical simulations and theoretical modeling, we establish a molecular description of protein hydration dynamics and identify the key protein features that govern it. Through detailed microscopic mapping of the water reorientation and hydrogen-bond (HB) dynamics around lysozyme, we first determine that 80% of the hydration layer waters experience a moderate slowdown factor of ~2-3, while the slower residual population is distributed along a power-law tail, in quantitative agreement with recent NMR results. We then establish that the water reorientation mechanism at the protein interface is dominated by large angular jumps similar to the bulk situation. A theoretical extended jump model is shown to provide the first rigorous determination of the two key contributions to the observed slowdown: a topological excluded-volume factor resulting from the local protein geometry, which governs the dynamics of the fastest 80% of the waters, and a free energetic factor arising from the water-protein HB strength, which is especially important for the remaining waters in confined sites at the protein interface. These simple local factors are shown to provide a nearly quantitative description of the hydration shell dynamics.


Chemical Society Reviews | 2013

Biomolecular hydration dynamics: a jump model perspective

Aoife C. Fogarty; Elise Duboué-Dijon; Fabio Sterpone; James T. Hynes; Damien Laage

The dynamics of water molecules within the hydration shell surrounding a biomolecule can have a crucial influence on its biochemical function. Characterizing their properties and the extent to which they differ from those of bulk water have thus been long-standing questions. Following a tutorial approach, we review the recent advances in this field and the different approaches which have probed the dynamical perturbation experienced by water in the vicinity of proteins or DNA. We discuss the molecular factors causing this perturbation, and describe how they change with temperature. We finally present more biologically relevant cases beyond the dilute aqueous situation. A special focus is on the jump model for water reorientation and hydrogen bond rearrangement.


Journal of Physical Chemistry B | 2011

Dynamics of water in concentrated solutions of amphiphiles: key roles of local structure and aggregation.

Fabio Sterpone; Damien Laage

Water translational and reorientational dynamics in concentrated solutions of amphiphiles are investigated through molecular dynamics simulations and analytic modeling. We evidence the critical importance of the solute concentration in determining the magnitude of the slowdown in water dynamics compared to the bulk situation. The comparison of concentrated aqueous solutions of tetramethylurea, which tends to aggregate, and of trimethylamine N-oxide, which does not, shows the dramatic impact of solute clustering on the water dynamics. No significant decoupling of the reorientation and translation dynamics of water is observed, even at very high solute concentrations. The respective roles of energetic and topological disorders in determining the translational subdiffusive water dynamics in these confining environments are discussed. The water reorientational dynamics is shown to be quantitatively described by an extended jump model which combines two factors determined by the local structure: the transition-state excluded volume and the transition-state hydrogen-bond strength.


Journal of Physical Chemistry B | 2015

Structures of the Alzheimer's Wild-Type Aβ1-40 Dimer from Atomistic Simulations.

Bogdan Tarus; Thanh Thuy Thi Tran; Jessica Nasica-Labouze; Fabio Sterpone; Phuong H. Nguyen; Philippe Derreumaux

We have studied the dimer of amyloid beta peptide Aβ of 40 residues by means of all-atom replica exchange molecular dynamics. The Aβ-dimers have been found to be the smallest toxic species in Alzheimers disease, but their inherent flexibilities have precluded structural characterization by experimental methods. Though the 24-μs-scale simulation reveals a mean secondary structure of 18% β-strand and 10% α helix, we find transient configurations with an unstructured N-terminus and multiple β-hairpins spanning residues 17-21 and 30-36, but the antiparallel and perpendicular peptide orientations are preferred over the parallel organization. Short-lived conformational states also consist of all α topologies, and one compact peptide with β-sheet structure stabilized by a rather extended peptide with α-helical content. Overall, this first all-atom study provides insights into the equilibrium structure of the Aβ1-40 dimer in aqueous solution, opening a new avenue for a comprehensive understanding of the impact of pathogenic and protective mutations in early-stage Alzheimers disease on a molecular level.


Journal of Physical Chemistry B | 2009

Key role of proximal water in regulating thermostable proteins.

Fabio Sterpone; Claudia Bertonati; Giuseppe Briganti; Simone Melchionna

Three homologous proteins with mesophilic, thermophilic and hyperthermophilic character have been studied via molecular dynamics simulations at four different temperatures in order to investigate how water controls thermostability. The water-exposed surface of the protein is shown to increase with the degree of thermophilicity, and the role of water in enhancing the protein internal flexibility and structural robustness is elucidated. The presence of water-water hydrogen bond clusters enveloping the macromolecule is shown to correlate with thermal robustness when going from the mesophilic to the hyperthermophilic variants. Our analysis indicates that essential contributions to thermostability stem from protein-water surface effects whereas the protein internal packing plays a minor role.


Journal of Physical Chemistry B | 2008

Molecular modeling and simulation of conjugated polymer oligomers: ground and excited state chain dynamics of PPV in the gas phase.

Fabio Sterpone; Peter J. Rossky

The ground and excited state dynamics of poly(p-phenylenevinylene) (PPV) chains is studied through an implementation of mixed quantum/classical molecular dynamics simulation. The model used in the simulations combines the semiempirical Pariser-Parr-Pople (PPP) Hamiltonian to treat the pi molecular electronic structure with a mechanical force field capturing all other aspects. Nuclear degrees of freedom are treated classically. We first validate the model by simulating PPV chains of various length, and evaluate the absorption spectra. The thermal disorder contribution to the breadth of the first absorption band is estimated to be 0.2 eV at T = 300 K. To investigate the relationship between the emission and chain conformation, we simulate an isolated ten unit chain of PPV in the ground and the lowest excited state. The emission spectrum, red-shifted with respect to absorption of about 0.2 eV as found in experiments, shows a structured line shape that we relate to the photoinduced CC bond distortions. In accord with earlier studies, the exciton self-traps in the middle of the chain. We introduce two collective variables that reflect geometrical distortion, and find these to be effective in describing the contribution of chain conformation to the emission spectrum. The collective variables are also shown to be effective in describing the bond relaxation dynamics after photoexcitation. Such a relaxation is found to occur in approximately 100 fs and is guided by a compensatory release of energy between the double and single bonds in the vinylene junctions and p-phenyl rings. Finally, we find that the chain has a very slight preference for a more planar conformation in the excited state, compared to the ground state. However, the thermal motions induce the chain to explore out-of-plane conformations in both the ground and the excited states with an amplitude significantly greater than this difference.


Journal of Physical Chemistry B | 2013

How conformational flexibility stabilizes the hyperthermophilic elongation factor G-domain.

Maria Kalimeri; Obaidur Rahaman; Simone Melchionna; Fabio Sterpone

Proteins from thermophilic organisms are stable and functional well above ambient temperature. Understanding the molecular mechanism underlying such a resistance is of crucial interest for many technological applications. For some time, thermal stability has been assumed to correlate with high mechanical rigidity of the protein matrix. In this work we address this common belief by carefully studying a pair of homologous G-domain proteins, with their melting temperatures differing by 40 K. To probe the thermal-stability content of the two proteins we use extensive simulations covering the microsecond time range and employ several different indicators to assess the salient features of the conformational landscape and the role of internal fluctuations at ambient condition. At the atomistic level, while the magnitude of fluctuations is comparable, the distribution of flexible and rigid stretches of amino-acids is more regular in the thermophilic protein causing a cage-like correlation of amplitudes along the sequence. This caging effect is suggested to favor stability at high T by confining the mechanical excitations. Moreover, it is found that the thermophilic protein, when folded, visits a higher number of conformational substates than the mesophilic homologue. The entropy associated with the occupation of the different substates and the thermal resilience of the protein intrinsic compressibility provide a qualitative insight on the thermal stability of the thermophilic protein as compared to its mesophilic homologue. Our findings potentially open the route to new strategies in the design of thermostable proteins.

Collaboration


Dive into the Fabio Sterpone's collaboration.

Top Co-Authors

Avatar

Simone Melchionna

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Phuong H. Nguyen

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Damien Laage

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giuseppe Briganti

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

James T. Hynes

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Peter J. Rossky

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge