Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabiola Paciello is active.

Publication


Featured researches published by Fabiola Paciello.


The Journal of Neuroscience | 2013

Noise-Induced Hearing Loss (NIHL) as a Target of Oxidative Stress-Mediated Damage: Cochlear and Cortical Responses after an Increase in Antioxidant Defense

Anna Rita Fetoni; Paola De Bartolo; Sara Letizia Maria Eramo; Rolando Rolesi; Fabiola Paciello; Romana Fato; Gaetano Paludetti; Laura Petrosini; Diana Troiani

This study addresses the relationship between cochlear oxidative damage and auditory cortical injury in a rat model of repeated noise exposure. To test the effect of increased antioxidant defenses, a water-soluble coenzyme Q10 analog (Qter) was used. We analyzed auditory function, cochlear oxidative stress, morphological alterations in auditory cortices and cochlear structures, and levels of coenzymes Q9 and Q10 (CoQ9 and CoQ10, respectively) as indicators of endogenous antioxidant capability. We report three main results. First, hearing loss and damage in hair cells and spiral ganglion was determined by noise-induced oxidative stress. Second, the acoustic trauma altered dendritic morphology and decreased spine number of II–III and V–VI layer pyramidal neurons of auditory cortices. Third, the systemic administration of the water-soluble CoQ10 analog reduced oxidative-induced cochlear damage, hearing loss, and cortical dendritic injury. Furthermore, cochlear levels of CoQ9 and CoQ10 content increased. These findings indicate that antioxidant treatment restores auditory cortical neuronal morphology and hearing function by reducing the noise-induced redox imbalance in the cochlea and the deafferentation effects upstream the acoustic pathway.


Free Radical Biology and Medicine | 2015

Rosmarinic acid up-regulates the noise-activated Nrf2/HO-1 pathway and protects against noise-induced injury in rat cochlea.

Anna Rita Fetoni; Fabiola Paciello; Rolando Rolesi; Sara Letizia Maria Eramo; Cesare Mancuso; Diana Troiani; Gaetano Paludetti

Noise-induced hearing loss depends on progressive increase of reactive oxygen species and lipoperoxidative damage in conjunction with the imbalance of antioxidant defenses. The redox-sensitive transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) plays a critical role in the regulation of cellular defenses against oxidative stress, including heme oxygenase-1 (HO-1) activation. In this work we describe a link between cochlear oxidative stress damage, induced by noise exposure, and the activation of the Nrf2/HO-1 pathway. In our model, noise induces superoxide production and overexpression of the lipid peroxidation marker 4-hydroxy-nonenals (4-HNE). To face the oxidative stress, the endogenous defense system is activated as well, as shown by the slight activation of superoxide dismutases (SODs). In addition, we observed the activation of the Nrf2/HO-1 pathway after noise exposure. Nrf2 appears to promote the maintenance of cellular homeostasis under stress conditions. However, in this model the endogenous antioxidant system fails to counteract noise-induced cell damage and its activation is not effective enough in preventing cochlear damage. The herb-derived phenol rosmarinic acid (RA) attenuates noise-induced hearing loss, reducing threshold shift, and promotes hair cell survival. In fact, RA enhances the endogenous antioxidant defenses, as shown by decreased superoxide production, reduced expression of 4-HNE, and up-regulation of SODs. Interestingly, RA potentiates the Nrf2/HO-1 signaling pathway, as shown by immunohistochemical and Western blot analyses. Thus, protective effects of RA are associated with the induction/activation of the Nrf2-ARE signaling pathway in addition to RA direct scavenging capability.


British Journal of Cancer | 2015

Molecular targets for anticancer redox chemotherapy and cisplatin-induced ototoxicity: the role of curcumin on pSTAT3 and Nrf-2 signalling.

Anna Rita Fetoni; Fabiola Paciello; Daniele Mezzogori; Rolando Rolesi; Sara Letizia Maria Eramo; Gaetano Paludetti; Diana Troiani

Background:In oncology, an emerging paradigm emphasises molecularly targeted approaches for cancer prevention and therapy and the use of adjuvant chemotherapeutics to overcome cisplatin limitations. Owing to their safe use, some polyphenols, such as curcumin, modulate important pathways or molecular targets in cancers. This paper focuses on curcumin as an adjuvant molecule to cisplatin by analysing its potential implications on the molecular targets, signal transducer and activator of transcription 3 (STAT3) and NF-E2 p45-related factor 2 (Nrf-2), in tumour progression and cisplatin resistance in vitro and the adverse effect ototoxicity in vivo.Methods:The effects of curcumin and/or cisplatin treatment have been evaluated in head and neck squamous cell carcinoma as well as in a rat model of cisplatin-induced ototoxicity by using immunofluorescence, western blot, and functional and morphological analysis.Results:This study demonstrates that curcumin attenuates all stages of tumour progression (survival, proliferation) and, by targeting pSTAT3 and Nrf-2 signalling pathways, provides chemosensitisation to cisplatin in vitro and protection from its ototoxic adverse effects in vivo.Conclusions:These results indicate that curcumin can be used as an efficient adjuvant to cisplatin cancer therapy. This treatment strategy in head and neck cancer could mediate cisplatin chemoresistance by modulating therapeutic targets (STAT3 and Nrf2) and, at the same time, reduce cisplatin-related ototoxic adverse effects.


Biochimica et Biophysica Acta | 2014

Time evolution of noise induced oxidation in outer hair cells: Role of NAD(P)H and plasma membrane fluidity

Giuseppe Maulucci; Diana Troiani; Sara Letizia Maria Eramo; Fabiola Paciello; Maria Vittoria Podda; Gaetano Paludetti; Massimiliano Papi; Alessandro Maiorana; Valentina Palmieri; Marco De Spirito; Anna Rita Fetoni

BACKGROUND Noise exposure impairs outer hair cells (OHCs). The common basis for OHC dysfunction and loss by acoustic over-stimulation is represented by reactive oxygen species (ROS) overload that may affect the membrane structural organization through generation of lipid peroxidation. METHODS Here we investigated in OHC different functional zones the mechanisms linking metabolic functional state (NAD(P)H intracellular distribution) to the generation of lipid peroxides and to the physical state of membranes by two photon fluorescence microscopy. RESULTS In OHCs of control animals, a more oxidized NAD(P)H redox state is associated to a less fluid plasma membrane structure. Acoustic trauma induces a topologically differentiated NAD(P)H oxidation in OHC rows, which is damped between 1 and 6h. Peroxidation occurs after ~4h from noise insult, while ROS are produced in the first 0.2h and damage cells for a period of time after noise exposure has ended (~7.5h) when a decrease of fluidity of OHC plasma membrane occurs. OHCs belonging to inner rows, characterized by a lower metabolic activity with respect to other rows, show less severe metabolic impairment. CONCLUSIONS Our data indicate that plasma membrane fluidity is related to NAD(P)H redox state and lipid peroxidation in hair cells. GENERAL SIGNIFICANCE Our results could pave the way for therapeutic intervention targeting the onset of redox umbalance.


Otology & Neurotology | 2014

Curcuma longa (curcumin) decreases in vivo cisplatin-induced ototoxicity through heme oxygenase-1 induction.

Anna Rita Fetoni; Sara Letizia Maria Eramo; Fabiola Paciello; Rolando Rolesi; Maria Vittoria Podda; Diana Troiani; Gaetano Paludetti

Hypothesis To investigate whether curcumin may have in vivo protective effects against cisplatin ototoxicity by its direct scavenger activity and/or by curcumin-mediated upregulation of HO-1. Background Cisplatin-induced ototoxicity is a major dose-limiting side effect in anticancer chemotherapy. A protective approach to decrease cisplatin ototoxicity without compromising its therapeutic efficacy remains a critical goal for anticancer therapy. Recent evidences indicate that curcumin exhibits antioxidant, anti-inflammatory, and chemosensitizer activities. Methods In male adult Wistar rats, a curcumin dose of 200 mg/kg, selected from a dose-response curve, was injected 1 hour before cisplatin administration and once daily for the following 3 days. A single dose of cisplatin (16 mg/kg) was administered intraperitoneally. Rats were divided as follows: 1) control, 2) curcumin control, 3) vehicle control, 4) cisplatin, 5) cisplatin+ vehicle, and 6) curcumin+cisplatin. ABRs were measured before and at Days 3 and 5 after cisplatin administration. Rhodamine-phalloidin staining, 4-hydroxy-2-nonenal and heme-oxigenase-1 immunostainings, and Western blot analyses were performed to assess and quantify OHC loss, lipid peroxidation, and the endogenous response to cisplatin-induced damage and to curcumin protection. Results Curcumin treatment attenuated hearing loss induced by cisplatin, increased OHC survival, decreased 4-HNE expression, and increased HO-1 expression. Conclusion This preclinical study demonstrates that systemic curcumin attenuates ototoxicity and provides molecular evidence for a role of HO-1 as an additional mediator in attenuating cisplatin-induced damage.


Frontiers in Cellular Neuroscience | 2014

Grafting and early expression of growth factors from adipose-derived stem cells transplanted into the cochlea, in a Guinea pig model of acoustic trauma.

Anna Rita Fetoni; Wanda Lattanzi; Sara Letizia Maria Eramo; Marta Barba; Fabiola Paciello; Chiara Moriconi; Rolando Rolesi; Fabrizio Michetti; Diana Troiani; Gaetano Paludetti

Noise exposure causes damage of multiple cochlear cell types producing permanent hearing loss with important social consequences. In mammals, no regeneration of either damaged hair cells or auditory neurons has been observed and no successful treatment is available to achieve a functional recovery. Loads of evidence indicate adipose-derived stem cells (ASCs) as promising tools in diversified regenerative medicine applications, due to the high degree of plasticity and trophic features. This study was aimed at identifying the path of in vivo cell migration and expression of trophic growth factors, upon ASCs transplantation into the cochlea, following noise-induced injury. ASCs were isolated in primary culture from the adipose tissue of a guinea pig, transduced using a viral vector to express the green fluorescent protein, and implanted into the scala tympani of deafened animals. Auditory function was assessed 3 and 7 days after surgery. The expression of trophic growth factors was comparatively analyzed using real-time PCR in control and noise-injured cochlear tissues. Immunofluorescence was used to assess the in vivo localization and expression of trophic growth factors in ASCs and cochleae, 3 and 7 days following homologous implantation. ASC implantation did not modify auditory function. ASCs migrated from the perilymphatic to the endolymphatic compartment, during the analyzed time course. Upon noise exposure, the expression of chemokine ligands and receptors related to the PDGF, VEGF, and TGFbeta pathways, increased in the cochlear tissues, possibly guiding in vivo cell migration. Immunofluorescence confirmed the increased expression, which appeared to be further strengthened by ASCs’ implantation. These results indicated that ASCs are able to migrate at the site of tissue damage and express trophic factors, upon intracochlear implantation, providing an original proof of principle, which could pave the way for further developments of ASC-based treatments of deafness.


Scientific Reports | 2016

The redox protein p66(shc) mediates cochlear vascular dysfunction and transient noise-induced hearing loss.

Anna Rita Fetoni; Sara Letizia Maria Eramo; Fabiola Paciello; Rolando Rolesi; Daniela Samengo; Gaetano Paludetti; Diana Troiani; Giovambattista Pani

p66shc, a member of the ShcA protein family, is essential for cellular response to oxidative stress, and elicits the formation of mitochondrial Reactive Oxygen Species (ROS), thus promoting vasomotor dysfunction and inflammation. Accordingly, mice lacking the p66 isoform display increased resistance to oxidative tissue damage and to cardiovascular disorders. Oxidative stress also contributes to noise-induced hearing loss (NIHL); we found that p66shc expression and serine phosphorylation were induced following noise exposure in the rat cochlea, together with markers of oxidative stress, inflammation and ischemia as indicated by the levels of the hypoxic inducible factor (HIF) and the vascular endothelial growth factor (VEGF) in the highly vascularised cochlear lateral region and spiral ganglion. Importantly, p66shc knock-out (p66 KO) 126 SvEv adult mice were less vulnerable to acoustic trauma with respect to wild type controls, as shown by preserved auditory function and by remarkably lower levels of oxidative stress and ischemia markers. Of note, decline of auditory function observed in 12 month old WT controls was markedly attenuated in p66KO mice consistent with delayed inner ear senescence. Collectively, we have identified a pivotal role for p66shc -induced vascular dysfunction in a common pathogenic cascade shared by noise-induced and age-related hearing loss.


Frontiers in Molecular Neuroscience | 2017

Mouse Panx1 is dispensable for hearing acquisition and auditory function

Veronica Zorzi; Fabiola Paciello; Gaia Ziraldo; Chiara Peres; Flavia Mazzarda; Chiara Nardin; Miriam Pasquini; Francesco Chiani; Marcello Raspa; Ferdinando Scavizzi; Andrea Carrer; Giulia Crispino; Catalin Dacian Ciubotaru; Hannah Monyer; Anna Rita Fetoni; Anna Maria Salvatore; Fabio Mammano

Panx1 forms plasma membrane channels in brain and several other organs, including the inner ear. Biophysical properties, activation mechanisms and modulators of Panx1 channels have been characterized in detail, however the impact of Panx1 on auditory function is unclear due to conflicts in published results. To address this issue, hearing performance and cochlear function of the Panx1−/− mouse strain, the first with a reported global ablation of Panx1, were scrutinized. Male and female homozygous (Panx1−/−), hemizygous (Panx1+/−) and their wild type (WT) siblings (Panx1+/+) were used for this study. Successful ablation of Panx1 was confirmed by RT-PCR and Western immunoblotting in the cochlea and brain of Panx1−/− mice. Furthermore, a previously validated Panx1-selective antibody revealed strong immunoreactivity in WT but not in Panx1−/− cochleae. Hearing sensitivity, outer hair cell-based “cochlear amplifier” and cochlear nerve function, analyzed by auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) recordings, were normal in Panx1+/− and Panx1−/− mice. In addition, we determined that global deletion of Panx1 impacts neither on connexin expression, nor on gap-junction coupling in the developing organ of Corti. Finally, spontaneous intercellular Ca2+ signal (ICS) activity in organotypic cochlear cultures, which is key to postnatal development of the organ of Corti and essential for hearing acquisition, was not affected by Panx1 ablation. Therefore, our results provide strong evidence that, in mice, Panx1 is dispensable for hearing acquisition and auditory function.


Redox biology | 2018

Cx26 partial loss causes accelerated presbycusis by redox imbalance and dysregulation of Nfr2 pathway

Anna Rita Fetoni; Veronica Zorzi; Fabiola Paciello; Gaia Ziraldo; Chiara Peres; Marcello Raspa; Ferdinando Scavizzi; Anna Maria Salvatore; Giulia Crispino; Gabriella Tognola; Giulia Gentile; Antonio Gianmaria Spampinato; Denis Cuccaro; Maria Guarnaccia; Giovanna Morello; Guy Van Camp; Erik Fransen; Marco Brumat; Giorgia Girotto; Gaetano Paludetti; Paolo Gasparini; Sebastiano Cavallaro; Fabio Mammano

Mutations in GJB2, the gene that encodes connexin 26 (Cx26), are the most common cause of sensorineural hearing impairment. The truncating variant 35delG, which determines a complete loss of Cx26 protein function, is the prevalent GJB2 mutation in several populations. Here, we generated and analyzed Gjb2+/− mice as a model of heterozygous human carriers of 35delG. Compared to control mice, auditory brainstem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs) worsened over time more rapidly in Gjb2+/− mice, indicating they were affected by accelerated age-related hearing loss (ARHL), or presbycusis. We linked causally the auditory phenotype of Gjb2+/− mice to apoptosis and oxidative damage in the cochlear duct, reduced release of glutathione from connexin hemichannels, decreased nutrient delivery to the sensory epithelium via cochlear gap junctions and deregulated expression of genes that are under transcriptional control of the nuclear factor erythroid 2-related factor 2 (Nrf2), a pivotal regulator of tolerance to redox stress. Moreover, a statistically significant genome-wide association with two genes (PRKCE and TGFB1) related to the Nrf2 pathway (p-value < 4 × 10−2) was detected in a very large cohort of 4091 individuals, originating from Europe, Caucasus and Central Asia, with hearing phenotype (including 1076 presbycusis patients and 1290 healthy matched controls). We conclude that (i) elements of the Nrf2 pathway are essential for hearing maintenance and (ii) their dysfunction may play an important role in the etiopathogenesis of human presbycusis.


Journal of Neuroinflammation | 2018

The human microglial HMC3 cell line: where do we stand? A systematic literature review

Cinzia Dello Russo; Natalia Cappoli; Isabella Coletta; Daniele Mezzogori; Fabiola Paciello; Giacomo Pozzoli; Pierluigi Navarra; Alessandra Battaglia

Microglia, unique myeloid cells residing in the brain parenchyma, represent the first line of immune defense within the central nervous system. In addition to their immune functions, microglial cells play an important role in other cerebral processes, including the regulation of synaptic architecture and neurogenesis. Chronic microglial activation is regarded as detrimental, and it is considered a pathogenic mechanism common to several neurological disorders. Microglial activation and function have been extensively studied in rodent experimental models, whereas the characterization of human cells has been limited due to the restricted availability of primary sources of human microglia. To overcome this problem, human immortalized microglial cell lines have been developed. The human microglial clone 3 cell line, HMC3, was established in 1995, through SV40-dependent immortalization of human embryonic microglial cells. It has been recently authenticated by the American Type Culture Collection (ATCC®) and distributed under the name of HMC3 (ATCC®CRL-3304). The HMC3 cells have been used in six research studies, two of which also indicated by ATCC® as reference articles. However, a more accurate literature revision suggests that clone 3 was initially distributed under the name of CHME3. In this regard, several studies have been published, thus contributing to a more extensive characterization of this cell line. Remarkably, the same cell line has been used in different laboratories with other denominations, i.e., CHME-5 cells and C13-NJ cells. In view of the fact that “being now authenticated by ATCC®” may imply a wider distribution of the cells, we aimed at reviewing data obtained with the human microglia cell line clone 3, making the readers aware of this complicated nomenclature. In addition, we also included original data, generated in our laboratory with the HMC3 (ATCC®CRL-3304) cells, providing information on the current state of the culture together with supplementary details on the culturing procedures to obtain and maintain viable cells.

Collaboration


Dive into the Fabiola Paciello's collaboration.

Top Co-Authors

Avatar

Anna Rita Fetoni

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Gaetano Paludetti

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Diana Troiani

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Rolando Rolesi

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Sara Letizia Maria Eramo

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Claudio Grassi

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Maria Vittoria Podda

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Daniele Mezzogori

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge