Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabíola Trevizol is active.

Publication


Featured researches published by Fabíola Trevizol.


Pharmacology, Biochemistry and Behavior | 2008

Influence of chronic exercise on reserpine-induced oxidative stress in rats: Behavioral and antioxidant evaluations

Angélica M. Teixeira; Fabíola Trevizol; Gabriela Colpo; Solange Cristina Garcia; Mariele F. Charão; Romaiana P. Pereira; Roselei Fachinetto; João Batista Teixeira da Rocha; Marilise Escobar Bürger

Several neurological diseases are related to oxidative stress (OS) and neurotoxicity. Considering that physical exercise may exert beneficial effects on antioxidant defenses, our objective was to evaluate the influence of a swimming exercise on an OS animal model (reserpine-induced orofacial dyskinesia). In this model, the increased dopamine metabolism can generate OS and neuronal degeneration, causing involuntary movements. The increase in vacuous chewing movements and facial twitching caused by reserpine (1 mg/kg s.c.) was partially prevented by exercise. An increase in catalase activity and a decrease in GSH levels were observed in the striatum. Physical training did not change the effects of reserpine on catalase, however it partially recovered GSH. Exercise per se caused a significant GSH decrease. There was a positive correlation between catalase and OD (r=0.41; r=0.47, P<0.05) and a negative correlation between GSH and OD (r=0.61; r=0.71, P<0.05). These results reveal the benefit of exercise in attenuating the motor disorder related to OS.


Neuroscience | 2011

Exercise affects memory acquisition, anxiety-like symptoms and activity of membrane-bound enzyme in brain of rats fed with different dietary fats: impairments of trans fat

Angélica M. Teixeira; Camila S. Pase; Nardeli Boufleur; Kr. Roversi; Raquel Cristine Silva Barcelos; Dalila M. Benvegnú; Hecson J. Segat; Verônica Tironi Dias; Patrícia Reckziegel; Fabíola Trevizol; Geisa S. Dolci; N.R. Carvalho; F.A.A. Soares; João Batista Teixeira da Rocha; Tatiana Emanuelli; Marilise Escobar Bürger

Here we evaluated the influence of physical exercise on behavior parameters and enzymatic status of rats supplemented with different dietary fatty acids (FA). Male Wistar rats fed diets enriched with soybean oil (SO), lard (L), or hydrogenated vegetable fat (HVF) for 48 weeks were submitted to swimming (30 min/d, five times per week) for 90 days. Dietary FA per se did not cause anxiety-like symptoms in the animals, but after physical exercise, SO group showed a better behavioral performance than L and the HVF groups in elevated plus maze (EPM). In Barnes maze, HVF group showed impaired memory acquisition as compared to L group, and exercise reversed this effect. SO-fed rats showed an improvement in memory acquisition after 1 day of training, whereas lard caused an improvement of memory only from day 4. HVF-fed rats showed no improvement of memory acquisition, but this effect was reversed by exercise in all training days. A lower activity of the Na(+)K(+)-ATPase in brain cortex of rats fed lard and HVF was observed, and this effect was maintained after exercise. Similarly, the HVF diet was related to lower activity of hippocampal Na(+)K(+)-ATPase, and exercise reduced activity of this enzyme in the SO and L groups. Our findings show influences of dietary FA on memory acquisition, whereas regular exercise improved this function and was beneficial on anxiety-like symptoms. As FA are present in neuronal membrane phospholipids and play a critical role in brain function, our results suggest that low incorporation of trans FA in neuronal membranes may act on cortical and hippocampal Na(+)K(+)-ATPase activity, but this change appears to be unrelated to the behavioral parameters primarily harmed by consumption of trans and less so by saturated FA, which were reversed by exercise.


Behavioural Brain Research | 2012

Could dietary trans fatty acids induce movement disorders? Effects of exercise and its influence on Na⁺K⁺-ATPase and catalase activity in rat striatum.

Angélica M. Teixeira; Verônica Tironi Dias; Camila S. Pase; Kr. Roversi; Nardeli Boufleur; Raquel Cristine Silva Barcelos; Dalila M. Benvegnú; Fabíola Trevizol; Geisa S. Dolci; N.R. Carvalho; A. Quatrin; Félix Alexandre Antunes Soares; Patrícia Reckziegel; Hecson J. Segat; João Batista Teixeira da Rocha; Tatiana Emanuelli; Marilise Escobar Bürger

The influence of trans fatty acids (FA) on development of orofacial dyskinesia (OD) and locomotor activity was evaluated. Rats were fed with diets enriched with 20% soybean oil (SO; n-6 FA), lard (L; saturated FA) or hydrogenated vegetable fat (HVF; trans FA) for 60 weeks. In the last 12 weeks each group was subdivided into sedentary and exercised (swimming). Brains of HVF and L-fed rats incorporated 0.33% and 0.20% of trans FA, respectively, while SO-fed group showed no incorporation of trans FA. HVF increased OD, while exercise exacerbated this in L and HVF-fed rats. HVF and L reduced locomotor activity, and exercise did not modify. Striatal catalase activity was reduced by L and HVF, but exercise increased its activity in the HVF-fed group. Na(+)K(+)-ATPase activity was not modified by dietary FA, however it was increased by exercise in striatum of SO and L-fed rats. We hypothesized that movement disorders elicited by HVF and less by L could be related to increased dopamine levels in striatum, which have been related to chronic trans FA intake. Exercise increased OD possibly by increase of brain dopamine levels, which generates pro-oxidant metabolites. Thus, a long-term intake of trans FA caused a small but significant brain incorporation of trans FA, which favored development of movement disorders. Exercise worsened behavioral outcomes of HVF and L-fed rats and increased Na(+)K(+)-ATPase activity of L and SO-fed rats, indicating its benefits. HVF blunted beneficial effects of exercise, indicating a critical role of trans FA in brain neurochemistry.


Behavioural Brain Research | 2011

Comparative study between two animal models of extrapyramidal movement disorders: prevention and reversion by pecan nut shell aqueous extract.

Fabíola Trevizol; Dalila M. Benvegnú; Raquel Cristine Silva Barcelos; Camila S. Pase; Hecson J. Segat; Verônica Tironi Dias; Geisa S. Dolci; Nardeli Boufleur; Patrícia Reckziegel; Marilise Escobar Bürger

Acute reserpine and subchronic haloperidol are animal models of extrapyramidal disorders often used to study parkinsonism, akinesia and tardive dyskinesia. In humans, these usually irreversible and disabling extrapyramidal disorders are developed by typical antipsychotic treatment, whose pathophysiology has been related to oxidative damages development. So far, there is no treatment to prevent these problems of the psychiatric clinic, and therefore further studies are needed. Here we used the animal models of extrapyramidal disorders cited above, which were performed in two distinct experiments: orofacial dyskinesia (OD)/catalepsy induced by acute reserpine and subchronic haloperidol after (experiment 1) and before (experiment 2) oral treatment with pecan shell aqueous extract (AE), a natural and promissory antioxidant. When administered previously (exp.1), the AE prevented OD and catalepsy induced by both reserpine and haloperidol. When reserpine and haloperidol were administered before the extract (exp.2), the animals developed OD and catalepsy all the same. However, the orofacial parameter (but not catalepsy) in both animal models was reversed after 7 and 14 days of AE treatment. These results indicate that, acute reserpine and subchronic haloperidol administrations induced similar motor disorders, although through different mechanisms, and therefore are important animal models to study the physiopathology of extrapyramidal disorders. Comparatively, the pecan shell AE was able to both prevent and reverse OD but only to prevent catalepsy. These results reinforce the role of oxidative stress and validate the two animal models used here. Our findings also favor the idea of prevention of extrapyramidal disorders, rather than their reversal.


Pharmacology, Biochemistry and Behavior | 2013

Influence of trans fat and omega-3 on the preference of psychostimulant drugs in the first generation of young rats

Fábio Teixeira Kuhn; Karine Roversi; Caren T.D. Antoniazzi; Camila S. Pase; Fabíola Trevizol; Raquel Cristine Silva Barcelos; Verônica Tironi Dias; Katiane Roversi; Nardeli Boufleur; Dalila M. Benvegnú; Jaqueline Piccolo; Tatiana Emanuelli; Marilise Escobar Bürger

The current Western diet often provides considerable amounts of saturated and trans fatty acids (TFA), whose incorporation into neuronal membranes has been implicated in changes of brain neurochemical functions. Such influence has caused concerns due to precipitation of neuropsychiatric disorders, whose data are still unclear. Here we evaluated the influence of different fats on preference parameters for amphetamine (AMPH): adolescent rats were orally supplemented with soybean oil (SO, rich in n-6 FA, which was considered an isocaloric control group), fish oil (FO, rich in n-3 FA) and hydrogenated vegetable fat (HVF, rich in saturated and trans FA) from weaning, which were born of dams supplemented with the same fat from pregnancy and lactation. AMPH preference, anxiety-like symptoms and locomotor index were evaluated in conditioned place preference (CPP), elevated plus maze (EPM) and open-field (OF), respectively, while brain oxidative status was determined in cortex, striatum and hippocampus. HVF increased AMPH-CPP and was associated with withdrawal signs, as observed by increased anxiety-like symptoms. Moreover, SO and FO were not associated with AMPH preference, but only FO-supplemented rats did not show any anxiety-like symptoms or increased locomotion. FO supplementation was related to lower oxidative damages to proteins and increased CAT activity in striatum and hippocampus, as well as increased GSH levels in blood, while HVF was related to increased oxidative status. In conclusion, our study showed the harmful influence of TFA on AMPH-CPP and drug craving symptoms, which can be related to dopaminergic neurotransmission.


Neuroscience | 2013

Influence of perinatal trans fat on behavioral responses and brain oxidative status of adolescent rats acutely exposed to stress

Camila S. Pase; Kr. Roversi; Fabíola Trevizol; K. Roversi; F.T. Kuhn; A.J. Schuster; L.T. Vey; Verônica Tironi Dias; Raquel Cristine Silva Barcelos; J. Piccolo; Tatiana Emanuelli; Marilise Escobar Bürger

Because consumption of processed foods has increased in the last decades and so far its potential influence on emotionality and susceptibility to stress is unknown, we studied the influence of different fatty acids (FA) on behavioral and biochemical parameters after acute restrain stress (AS) exposure. Two sequential generations of female rats were supplemented with soybean oil (control group; C-SO), fish oil (FO) and hydrogenated vegetable fat (HVF) from pregnancy and during lactation. At 41days of age, half the animals of each supplemented group were exposed to AS and observed in open field and elevated plus maze task, followed by euthanasia for biochemical assessments. The HVF-supplemented group showed higher anxiety-like symptoms per se, while the C-SO and FO groups did not show these behaviors. Among groups exposed to AS, HVF showed locomotor restlessness in the open field, while both C-SO and HVF groups showed anxiety-like symptoms in the elevated plus maze, but this was not observed in the FO group. Biochemical evaluations showed higher lipoperoxidation levels and lower cell viability in cortex in the HVF group. In addition, HVF-treated rats showed reduced catalase activity in striatum and hippocampus, as well as increased generation of reactive species in striatum, while FO was associated with increased cell viability in the hippocampus. Among groups exposed to AS, HVF increased reactive species generation in the brain, decreased cell viability in the cortex and striatum, and decreased catalase activity in the striatum and hippocampus. Taken together, our findings show that the type of FA provided during development and growth over two generations is able to modify the brain oxidative status, which was particularly adversely affected by trans fat. In addition, the harmful influence of chronic consumption of trans fats as observed in this study can enhance emotionality and anxiety parameters resulting from stressful situations of everyday life, which can trigger more severe neuropsychiatric conditions.


Pharmacology, Biochemistry and Behavior | 2011

Comparative study between n-6, trans and n-3 fatty acids on repeated amphetamine exposure: a possible factor for the development of mania.

Fabíola Trevizol; Dalila M. Benvegnú; Raquel Cristine Silva Barcelos; Nardeli Boufleur; Geisa S. Dolci; Liz G. Müller; Camila S. Pase; Patrícia Reckziegel; Verônica Tironi Dias; Hecson J. Segat; Angélica M. Teixeira; Tatiana Emanuelli; João Batista Teixeira da Rocha; Marilise Escobar Bürger

In the last decades, foods rich in omega-3 (ω-3) fatty acids (FA) have been replaced by omega-6 (ω-6) and trans FA, which are found in processed foods. The influence of ω-6 (soybean oil--SO), trans (hydrogenated vegetable fat--HVF) and ω-3 (fish oil--FO) fatty acids on locomotor and oxidative stress (OS) parameters were studied in an animal model of mania. Rats orally fed with SO, HVF and FO for 8 weeks received daily injections of amphetamine (AMPH--4 mg/kg/mL-ip) for the last week of oral supplementation. HVF induced hyperactivity, increased the protein carbonyl levels in the cortex and decreased the mitochondrial viability in cortex and striatum. AMPH-treatment increased the locomotion and decreased the mitochondrial viability in all groups, but its neurotoxicity was higher in the HVF group. Similarly, AMPH administration increased the protein carbonyl levels in striatum and cortex of HVF-supplemented rats. AMPH reduced the vitamin-C plasmatic levels of SO and HVF-fed rats, whereas no change was observed in the FO group. Our findings suggest that trans fatty acids increased the oxidative damage per se and exacerbated the AMPH-induced effects. The impact of trans fatty acids consumption on neuronal diseases and its consequences in brain functions must be further evaluated.


Hippocampus | 2015

Cross-generational trans fat intake modifies BDNF mRNA in the hippocampus: Impact on memory loss in a mania animal model.

Fabíola Trevizol; Verônica Tironi Dias; Katiane Roversi; Raquel Cristine Silva Barcelos; Fábio Teixeira Kuhn; Karine Roversi; Camila S. Pase; Ronaldo Medeiros Golombieski; Juliana Cristina Veit; Jaqueline Piccolo; Tatiana Emanuelli; João Batista Teixeira da Rocha; Marilise Escobar Bürger

Recently, we have described the influence of dietary fatty acids (FA) on mania‐like behavior of first generation animals. Here, two sequential generations of female rats were supplemented with soybean oil (SO, rich in n‐6 FA, control group), fish oil (FO, rich in n‐3 FA) and hydrogenated vegetable fat (HVF, rich in trans FA) from pregnancy and during lactation. In adulthood, half of each group was exposed to an amphetamine (AMPH)‐induced mania animal model for behavioral, biochemical and molecular assessments. FO supplementation was associated with lower reactive species (RS) generation and protein carbonyl (PC) levels and increased dopamine transporter (DAT) levels, while HVF increased RS and PC levels, thus decreasing catalase (CAT) activity and DAT levels in hippocampus after AMPH treatment. AMPH impaired short‐ (1 h) and long‐ (24 h) term memory in the HVF group. AMPH exposure was able to reduce hippocampal BDNF‐ mRNA expression, which was increased in FO. While HVF was related to higher trans FA (TFA) incorporation in hippocampus, FO was associated with increased percentage of n‐3 polyunsaturated FA (PUFA) together with lower n‐6/n‐3 PUFA ratio. Interestingly, our data showed a positive correlation between brain‐derived neurotrophic factor (BDNF) mRNA and short‐ and long‐term memory (r2 = 0.53; P = 0.000/r2 = 0.32; P = 0.011, respectively), as well as a negative correlation between PC and DAT levels (r2 = 0.23; P = 0.015). Our findings confirm that provision of n‐3 or TFA during development over two generations is able to change the neuronal membrane lipid composition, protecting or impairing the hippocampus, respectively, thus affecting neurothrophic factor expression such as BDNF mRNA. In this context, chronic consumption of trans fats over two generations can facilitate the development of mania‐like behavior, so leading to memory impairment and emotionality, which are related to neuropsychiatric conditions.


Toxicology Letters | 2015

Toxicological aspects of trans fat consumption over two sequential generations of rats: Oxidative damage and preference for amphetamine

Fábio Teixeira Kuhn; Fabíola Trevizol; Verônica Tironi Dias; Raquel Cristine Silva Barcelos; Camila S. Pase; Karine Roversi; Caren T.D. Antoniazzi; Katiane Roversi; Nardeli Boufleur; Dalila M. Benvegnú; Tatiana Emanuelli; Marilise Escobar Bürger

Chronic consumption of processed food causes structural changes in membrane phospholipids, affecting brain neurotransmission. Here we evaluated noxious influences of dietary fats over two generations of rats on amphetamine (AMPH)-conditioned place preference (CPP). Female rats received soybean oil (SO, rich in n-6 fatty acids (FA)), fish oil (FO, rich in n-3 FA) and hydrogenated vegetable fat (HVF, rich in trans fatty acids (TFA)) for two successive generations. Male pups from the 2nd generation were maintained on the same supplementation until 41 days of age, when they were conditioned with AMPH in CPP. While the FO group showed higher incorporation of n-3 polyunsaturated-FA (PUFA) in cortex/hippocampus, the HVF group showed TFA incorporation in these same brain areas. The SO and HVF groups showed AMPH-preference and anxiety-like symptoms during abstinence. Higher levels of protein carbonyl (PC) and lower levels of non-protein thiols (NPSH) were observed in cortex/hippocampus of the HVF group, indicating antioxidant defense system impairment. In contrast, the FO group showed no drug-preference and lower PC levels in cortex. Cortical PC was positively correlated with n-6/n-3 PUFA ratio, locomotion and anxiety-like behavior, and hippocampal PC was positively correlated with AMPH-preference, reinforcing connections between oxidative damage and AMPH-induced preference/abstinence behaviors. As brain incorporation of trans and n-6 PUFA modifies its physiological functions, it may facilitate drug addiction.


Physiology & Behavior | 2015

Chronic consumption of trans fat can facilitate the development of hyperactive behavior in rats

Camila S. Pase; Kr. Roversi; Fabíola Trevizol; F.T. Kuhn; Verônica Tironi Dias; Katiane Roversi; Luciana Taschetto Vey; Caren T.D. Antoniazzi; Raquel Cristine Silva Barcelos; Marilise Escobar Bürger

In recent decades, the increased consumption of processed foods, which are rich in hydrogenated vegetable fat (HVF), has led to a decreased consumption of fish and oilseed, rich in omega-3 fatty acids. This eating habit provides an increased intake of trans fatty acids (TFA), which may be related to neuropsychiatric conditions, including inattention and hyperactivity. In this study, we evaluated the potential connection between prolonged trans fat consumption and development of hyperactivity-like symptoms in rats using different behavioral paradigms. Trans fat intake for 10 months (Experiment 1), as well as during pregnancy and lactation across two sequential generations of rats, (Experiment 4) induced active coping in the forced swimming task (FST). In addition, HVF supplementation was associated with increased locomotion before and after amphetamine (AMPH) administration (Experiment 2). Similarly, HVF supplementation during pregnancy and lactation were associated with increased locomotion in both young and adult rats (Experiment 3). Furthermore, trans fat intake across two sequential generations increased locomotor and exploratory activities following stressors (Experiment 4). From these results, we suggest that chronic consumption of trans fat is able to enhance impulsiveness and reactivity to novelty, facilitating hyperactive behaviors.

Collaboration


Dive into the Fabíola Trevizol's collaboration.

Top Co-Authors

Avatar

Marilise Escobar Bürger

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Raquel Cristine Silva Barcelos

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Verônica Tironi Dias

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Tatiana Emanuelli

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Camila S. Pase

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Karine Roversi

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Dalila M. Benvegnú

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Hecson J. Segat

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Katiane Roversi

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Kr. Roversi

Universidade Federal de Santa Maria

View shared research outputs
Researchain Logo
Decentralizing Knowledge