Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabrice Chrétien is active.

Publication


Featured researches published by Fabrice Chrétien.


Infection and Immunity | 2009

Evidence of a Role for Monocytes in Dissemination and Brain Invasion by Cryptococcus neoformans

Caroline Charlier; Kirsten Nielsen; Samira Daou; Madly Brigitte; Fabrice Chrétien; Françoise Dromer

ABSTRACT The pathogenesis of cryptococcosis, including the events leading to the production of meningoencephalitis, is still largely unknown. Evidence of a transcellular passage of Cryptococcus neoformans across the blood-brain barrier (BBB) and subsequent BBB disruption exists, but the paracellular passage of free yeasts and the role of monocytes in yeast dissemination and brain invasion (Trojan horse method) remain uncertain. We used our model of disseminated cryptococcosis, in which crossing of the BBB starts 6 h after intravenous inoculation, to study paracellular passage of the BBB. We prepared bone marrow-derived monocytes (BMDM) infected in vitro with C. neoformans (BMDM yeasts) and free yeasts and measured fungal loads in tissues. (i) Spleen and lung CFU were >2-fold higher in mice treated with BMDM yeasts than in those treated with free yeasts for 1 and 24 h (P < 0.05), while brain CFU were increased (3.9 times) only at 24 h (P < 0.05). (ii) By comparing the kinetics of brain invasion in naïve mice and in mice with preestablished cryptococcosis, we found that CFU were lower in the latter case, except at 6 h, when CFU from mice inoculated with BMDM yeasts were comparable to those measured in naïve mice and 2.5-fold higher than those in mice with preestablished cryptococcosis who were inoculated with free yeasts. (iii) Late phagocyte depletion obtained by clodronate injection reduced disease severity and lowered the fungal burden by 40% in all organs studied. These results provide evidence for Trojan horse crossing of the BBB by C. neoformans, together with mechanisms involving free yeasts, and overall for a role of phagocytes in fungal dissemination.


PLOS Pathogens | 2010

Cryptococcal cell morphology affects host cell interactions and pathogenicity.

Laura H. Okagaki; Anna K. Strain; Judith N. Nielsen; Caroline Charlier; Nicholas J. Baltes; Fabrice Chrétien; Joseph Heitman; Françoise Dromer; Kirsten Nielsen

Cryptococcus neoformans is a common life-threatening human fungal pathogen. The size of cryptococcal cells is typically 5 to 10 µm. Cell enlargement was observed in vivo, producing cells up to 100 µm. These morphological changes in cell size affected pathogenicity via reducing phagocytosis by host mononuclear cells, increasing resistance to oxidative and nitrosative stress, and correlated with reduced penetration of the central nervous system. Cell enlargement was stimulated by coinfection with strains of opposite mating type, and ste3 a Δ pheromone receptor mutant strains had reduced cell enlargement. Finally, analysis of DNA content in this novel cell type revealed that these enlarged cells were polyploid, uninucleate, and produced daughter cells in vivo. These results describe a novel mechanism by which C. neoformans evades host phagocytosis to allow survival of a subset of the population at early stages of infection. Thus, morphological changes play unique and specialized roles during infection.


The New England Journal of Medicine | 2013

Deep Dermatophytosis and Inherited CARD9 Deficiency

Fanny Lanternier; Saad Pathan; Quentin B. Vincent; Luyan Liu; Sophie Cypowyj; Carolina Prando; Mélanie Migaud; Lynda Taibi; Aomar Ammar-Khodja; Omar Boudghene Stambouli; Boumediene Guellil; Frédérique Jacobs; Jean-Christophe Goffard; Kinda Schepers; Véronique Del Marmol; L. Boussofara; M. Denguezli; Molka Larif; Hervé Bachelez; Laurence Michel; Gérard Lefranc; Rod Hay; Grégory Jouvion; Fabrice Chrétien; Sylvie Fraitag; Marie Elisabeth Bougnoux; Merad Boudia; Laurent Abel; Olivier Lortholary; Jean-Laurent Casanova

BACKGROUND Deep dermatophytosis is a severe and sometimes life-threatening fungal infection caused by dermatophytes. It is characterized by extensive dermal and subcutaneous tissue invasion and by frequent dissemination to the lymph nodes and, occasionally, the central nervous system. The condition is different from common superficial dermatophyte infection and has been reported in patients with no known immunodeficiency. Patients are mostly from North African, consanguineous, multiplex families, which strongly suggests a mendelian genetic cause. METHODS We studied the clinical features of deep dermatophytosis in 17 patients with no known immunodeficiency from eight unrelated Tunisian, Algerian, and Moroccan families. Because CARD9 (caspase recruitment domain-containing protein 9) deficiency has been reported in an Iranian family with invasive fungal infections, we also sequenced CARD9 in the patients. RESULTS Four patients died, at 28, 29, 37, and 39 years of age, with clinically active deep dermatophytosis. No other severe infections, fungal or otherwise, were reported in the surviving patients, who ranged in age from 37 to 75 years. The 15 Algerian and Tunisian patients, from seven unrelated families, had a homozygous Q289X CARD9 allele, due to a founder effect. The 2 Moroccan siblings were homozygous for the R101C CARD9 allele. Both alleles are rare deleterious variants. The familial segregation of these alleles was consistent with autosomal recessive inheritance and complete clinical penetrance. CONCLUSIONS All the patients with deep dermatophytosis had autosomal recessive CARD9 deficiency. Deep dermatophytosis appears to be an important clinical manifestation of CARD9 deficiency. (Funded by Agence Nationale pour la Recherche and others.).


American Journal of Pathology | 2005

Capsule structure changes associated with Cryptococcus neoformans crossing of the blood-brain barrier.

Caroline Charlier; Fabrice Chrétien; Marielle Baudrimont; Elodie Mordelet; Olivier Lortholary; Françoise Dromer

Cryptococcus neoformans is a yeast responsible for disseminated meningoencephalitis in patients with cellular immune defects. The major virulence factor is the polysaccharide capsule. We took advantage of a relevant murine model of disseminated meningoencephalitis to study the early events associated with blood-brain barrier (BBB) crossing. Mice were sacrificed at 1, 6, 24, and 48 hours post-intravenous inoculation, and classical histology, electron microscopy, and double immunofluorescence were used to study tissues and yeasts. Crossing of the BBB occurred early after inoculation, did not involve the choroid plexus but instead occurred at the level of the cortical capillaries, and caused early and severe damage to the structure of the microvessels. Seeding of the leptomeninges was not the primary event but occurred secondary to leakage of cortical pseudocysts. Organ invasion was associated with changes in cryptococcal capsule structure and cell size, which differed in terms of magnitude and kinetics, depending on both the organs involved, and potentially, on the bed structure of the local capillary. The rapid changes in capsule structure could contribute to inability of the host immune response to control cryptococcal infection in extrapulmonary spaces.


Cell Stem Cell | 2009

Autocrine and Paracrine Angiopoietin 1/Tie-2 Signaling Promotes Muscle Satellite Cell Self-Renewal

Rana Abou-Khalil; Fabien Le Grand; Giorgia Pallafacchina; Samuel Valable; François-Jérôme Authier; Michael A. Rudnicki; Romain K. Gherardi; Stéphane Germain; Fabrice Chrétien; Athanassia Sotiropoulos; Peggy Lafuste; Didier Montarras; Bénédicte Chazaud

Mechanisms governing muscle satellite cell withdrawal from cell cycle to enter into quiescence remain poorly understood. We studied the role of angiopoietin 1 (Ang1) and its receptor Tie-2 in the regulation of myogenic precursor cell (mpc) fate. In human and mouse, Tie-2 was preferentially expressed by quiescent satellite cells in vivo and reserve cells (RCs) in vitro. Ang1/Tie-2 signaling, through ERK1/2 pathway, decreased mpc proliferation and differentiation, increased the number of cells in G0, increased expression of RC-associated markers (p130, Pax7, Myf-5, M-cadherin), and downregulated expression of differentiation-associated markers. Silencing Tie-2 had opposite effects. Cells located in the satellite cell neighborhood (smooth muscle cells, fibroblasts) upregulated RC-associated markers by secreting Ang1 in vitro. In vivo, Tie-2 blockade and Ang1 overexpression increased the number of cycling and quiescent satellite cells, respectively. We propose that Ang1/Tie-2 signaling regulates mpc self-renewal by controlling the return to quiescence of a subset of satellite cells.


American Journal of Pathology | 2004

Adult Bone Marrow-Derived Stem Cells in Muscle Connective Tissue and Satellite Cell Niches

P. Dreyfus; Fabrice Chrétien; Bénédicte Chazaud; Youlia Kirova; Philippe Caramelle; Luis Garcia; Gillian Butler-Browne; Romain K. Gherardi

Skeletal muscle includes satellite cells, which reside beneath the muscle fiber basal lamina and mainly represent committed myogenic precursor cells, and multipotent stem cells of unknown origin that are present in muscle connective tissue, express the stem cell markers Sca-1 and CD34, and can differentiate into different cell types. We tracked bone marrow (BM)-derived stem cells in both muscle connective tissue and satellite cell niches of irradiated mice transplanted with green fluorescent protein (GFP)-expressing BM cells. An increasing number of GFP+ mononucleated cells, located both inside and outside of the muscle fiber basal lamina, were observed 1, 3, and 6 months after transplantation. Sublaminal cells expressed unambiguous satellite cell markers (M-cadherin, Pax7, NCAM) and fused into scattered GFP+ muscle fibers. In muscle connective tissue there were GFP+ cells located close to blood vessels that expressed the ScaI or CD34 stem-cell antigens. The rate of settlement of extra- and intralaminal compartments by BM-derived cells was compatible with the view that extralaminal cells constitute a reservoir of satellite cells. We conclude that both muscle satellite cells and stem cell marker-expressing cells located in muscle connective tissue can derive from BM in adulthood.


Brain Pathology | 2006

Regulated Expression of Sodium-dependent Glutamate Transporters and Synthetase: a Neuroprotective Role for Activated Microglia and Macrophages in HIV Infection?

Gabriel Gras; Fabrice Chrétien; Anne-Valérie Vallat-Decouvelaere; Gwenaelle Le Pavec; Fabrice Porcheray; Christophe Bossuet; Cathie Léone; Patricia Mialocq; Nathalie Dereuddre-Bosquet; Pascal Clayette; Roger Le Grand; Christophe Créminon; Dominique Dormont; Anne-Cécile Rimaniol; Françoise Gray

It is now widely accepted that neuronal damage in HIV infection results mainly from microglial activation and involves apoptosis, oxidative stress and glutamate‐mediated neurotoxicity. Glutamate toxicity acts via 2 distinct pathways: an excitotoxic one in which glutamate receptors are hyperactivated, and an oxidative one in which cystine uptake is inhibited, resulting in glutathione depletion and oxidative stress. A number of studies show that astrocytes normally take up glutamate, keeping extracellular glutamate concentration low in the brain and preventing excitotoxicity. This action is inhibited in HIV infection, probably due to the effects of inflammatory mediators and viral proteins. Other in vitro studies as well as in vivo experiments in rodents following mechanical stimulation, show that activated microglia and brain macrophages express high affinity glutamate transporters. These data have been confirmed in chronic inflammation of the brain, particularly in SIV infection, where activated microglia and brain macrophages also express glu‐tamine synthetase. Recent studies in humans with HIV infection show that activated microglia and brain macrophages express the glutamate transporter EAAT‐1 and that expression varies according to the disease stage. This suggests that, besides their recognized neurotoxic properties in HIV infection, these cells also have a neuroprotective function, and may partly make up for the inhibited astrocytic function, at least temporarily. This hypothesis might explain the discrepancy between microglial activation which occurs early in the disease, and neuronal apoptosis and neuronal loss which is a late event. In this review article, we discuss the possible neuro‐protective and neurotrophic roles of activated microglia and macrophages that may be generated by the expression of high affinity glutamate transporters and glutamine synthetase, 2 major effectors of glial glutamate metabolism, and the implications for HIV‐induced neuronal dysfunction, the underlying cause of HIV dementia.


The Journal of Infectious Diseases | 2012

Chikungunya Virus Infection of Corneal Grafts

Thérèse Couderc; Nicolas Gangneux; Fabrice Chrétien; Valérie Caro; Tan Le Luong; Bernadette Ducloux; Hugues J. Tolou; Marc Lecuit; Marc Grandadam

BACKGROUND Chikungunya virus (CHIKV) is an arbovirus with a high potential to spread globally. We investigated whether CHIKV is transmittable via corneal grafts. METHODS Serum specimens from 69 potential corneal donors living in La Réunion during the 2005–2006 outbreak of CHIKV infection were screened for anti-CHIKV antibodies. Serum specimens and corneoscleral rims were subjected to quantitative reverse-transcription real-time polymerase chain reaction (qRT-PCR) for detection of CHIKV. CHIKV isolation and immunolabeling were performed on eye tissue specimens. Viral transmission via the ocular route was assessed in an animal model of human CHIKV infection. RESULTS Twelve apparently uninfected donors were viremic and/or positive for immunoglobulin M (IgM) and/or immunoglobulin G. Eye tissue specimens from 12 donors who were or were not viremic and were or were not seropositive were investigated. qRT-PCR detected CHIKV RNA in corneoscleral rims from 4 patients: 1 patient was viremic, 2 were viremic and IgM positive, and 1 was IgM positive. Infectious CHIKV was isolated from all qRT-PCR–positive samples, and antigens were detected in corneal and scleral specimens, the iris, the ciliary body, and oculomotor muscles. CONCLUSIONS One-third of eligible corneas (4 of 12) from donors apparently uninfected with CHIKV were infected with CHIKV during the study period. CHIKV infects the human cornea and can be transmitted via the ocular route. In the absence of systematic CHIKV screening in donors, cornea donation should be banned in areas where CHIKV circulates.


Critical Care | 2013

Pattern of Brain Injury in the Acute Setting of Human Septic Shock

Andrea Polito; Frédéric Eischwald; Anne-Laure Le Maho; Angelo Polito; Eric Azabou; Djillali Annane; Fabrice Chrétien; Robert D. Stevens; Robert Carlier; Tarek Sharshar

BackgroundSepsis-associated brain dysfunction has been linked to white matter lesions (leukoencephalopathy) and ischemic stroke. Our objective was to assess the prevalence of brain lesions in septic shock patients requiring magnetic resonance imaging (MRI) for an acute neurologic change.MethodSeventy-one septic shock patients were included in a prospective observational study. Patients underwent daily neurological examination. Brain MRI was obtained in patients who developed focal neurological deficit, seizure, coma, or delirium. Electroencephalogy was performed in case of coma, delirium, or seizure. Leukoencephalopathy was graded and considered present when white matter lesions were either confluent or diffuse. Patient outcome was evaluated at 6 months with the Glasgow Outcome Scale (GOS).ResultsWe included 71 patients with median age of 65 years (56 to 76) and SAPS II at admission of 49 (38 to 60). MRI was indicated on focal neurological sign in 13 (18%), seizure in 7 (10%), coma in 33 (46%), and delirium in 35 (49%). MRI was normal in 37 patients (52%) and showed cerebral infarcts in 21 (29%), leukoencephalopathy in 15 (21%), and mixed lesions in 6 (8%). EEG malignant pattern was more frequent in patients with ischemic stroke or leukoencephalopathy. Ischemic stroke was independently associated with disseminated intravascular coagulation (DIC), focal neurologic signs, increased mortality, and worse GOS at 6 months.ConclusionsBrain MRI in septic shock patients who developed acute brain dysfunction can reveal leukoencephalopathy and ischemic stroke, which is associated with DIC and increased mortality.


Journal of Neurochemistry | 2004

Up-regulation of glutamate concentration in the putamen and in the prefrontal cortex of asymptomatic SIVmac251-infected macaques without major brain involvement

Christophe Bossuet; Françoise Vaufrey; Françoise Condé; Fabrice Chrétien; Jacques Pichon; Philippe Hantraye; Roger Le Grand; D. Dormont; Gabriel Gras

We quantified putamen and prefrontal cortex metabolites in macaques with simian immunodeficiency virus infection and searched for virological and histological correlates. Fourteen asymptomatic macaques infected since 8–78 months (median: 38) were compared with eight uninfected ones. Absolute concentrations of acetate, alanine, aspartate, choline, creatine, GABA, glutamate, glutamine, lactate, myo‐inositol, N‐acetylaspartate, taurine and valine were determined by ex vivo proton magnetic resonance spectroscopy. Glutamate concentration in the CSF was determined by HPLC. Gliosis was assessed by glial fibrillary acidic protein and CD68 immunohistochemistry. Glutamate concentration was slightly increased in the prefrontal cortex (19%, p = 0.0152, t‐test) and putamen (13%, p = 0.0354, t‐test) of the infected macaques, and was unaffected in the CSF. Myo‐inositol concentration was increased in the prefrontal cortex only (27%, p = 0.0136). The concentrations of glutamate and myo‐inositol in the prefrontal cortex were higher in the animals with marked or intense microgliosis (p = 0.0114). The other studied metabolites, including N‐acetylaspartate, were not altered. Glutamate concentration may thus increase in the cerebral parenchyma in asymptomatic animals, but is not accompanied by a detectable decrease in N‐acetylaspartate concentration (neuronal dysfunction). Thus, there are probably compensatory mechanisms that may limit glutamate increase and/or counterbalance its effects.

Collaboration


Dive into the Fabrice Chrétien's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge