Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabrice Daian is active.

Publication


Featured researches published by Fabrice Daian.


Current Biology | 2006

A Quantitative Approach to the Study of Cell Shapes and Interactions during Early Chordate Embryogenesis

Olivier Tassy; Fabrice Daian; Clare Hudson; Vincent Bertrand; Patrick Lemaire

BACKGROUND The prospects of deciphering the genetic program underlying embryonic development were recently boosted by the generation of large sets of precisely organized quantitative molecular data. In contrast, although the precise arrangement, interactions, and shapes of cells are crucial for the fulfilment of this program, their description remains coarse and qualitative. To bridge this gap, we developed a generic software, 3D Virtual Embryo, to quantify the geometry and interactions of cells in interactive three-dimensional embryo models. We applied this approach to early ascidian embryos, chosen because of their simplicity and their phylogenetic proximity to vertebrates. RESULTS We generated a collection of 19 interactive ascidian embryos between the 2- and 44-cell stages. We characterized the evolution with time, and in different cell lineages, of the volume of cells and of eight mathematical descriptors of their geometry, and we measured the surface of contact between neighboring blastomeres. These analyses first revealed that early embryonic blastomeres adopt a surprising variety of shapes, which appeared to be under strict and dynamic developmental control. Second, we found novel asymmetric cell divisions in the posterior vegetal lineages, which gave birth to sister cells with different fates. Third, during neural induction, differences in the area of contact between individual competent animal cells and inducing vegetal blastomeres appeared important to select the induced cells. CONCLUSIONS In addition to novel insight into both cell-autonomous and inductive processes controlling early ascidian development, we establish a generic conceptual framework for the quantitative analysis of embryo geometry that can be applied to other model organisms.


Genome Research | 2010

The ANISEED database: Digital representation, formalization, and elucidation of a chordate developmental program

Olivier Tassy; Delphine Dauga; Fabrice Daian; Daniel Sobral; François B. Robin; Pierre Khoueiry; David Salgado; Vanessa Fox; Danièle Caillol; Renaud Schiappa; Baptiste Laporte; Anne C. Rios; Guillaume Luxardi; Takehiro G. Kusakabe; Jean-Stéphane Joly; Sébastien Darras; Lionel Christiaen; Magali Contensin; Hélène Auger; Clément Lamy; Clare Hudson; Ute Rothbächer; Michael J. Gilchrist; Kazuhiro W. Makabe; Kohji Hotta; Shigeki Fujiwara; Nori Satoh; Yutaka Satou; Patrick Lemaire

Developmental biology aims to understand how the dynamics of embryonic shapes and organ functions are encoded in linear DNA molecules. Thanks to recent progress in genomics and imaging technologies, systemic approaches are now used in parallel with small-scale studies to establish links between genomic information and phenotypes, often described at the subcellular level. Current model organism databases, however, do not integrate heterogeneous data sets at different scales into a global view of the developmental program. Here, we present a novel, generic digital system, NISEED, and its implementation, ANISEED, to ascidians, which are invertebrate chordates suitable for developmental systems biology approaches. ANISEED hosts an unprecedented combination of anatomical and molecular data on ascidian development. This includes the first detailed anatomical ontologies for these embryos, and quantitative geometrical descriptions of developing cells obtained from reconstructed three-dimensional (3D) embryos up to the gastrula stages. Fully annotated gene model sets are linked to 30,000 high-resolution spatial gene expression patterns in wild-type and experimentally manipulated conditions and to 528 experimentally validated cis-regulatory regions imported from specialized databases or extracted from 160 literature articles. This highly structured data set can be explored via a Developmental Browser, a Genome Browser, and a 3D Virtual Embryo module. We show how integration of heterogeneous data in ANISEED can provide a system-level understanding of the developmental program through the automatic inference of gene regulatory interactions, the identification of inducing signals, and the discovery and explanation of novel asymmetric divisions.


Nature Biotechnology | 2008

Minimum information specification for in situ hybridization and immunohistochemistry experiments (MISFISHIE)

Eric W. Deutsch; Catherine A. Ball; Jules J. Berman; G. Steven Bova; Alvis Brazma; Roger E. Bumgarner; David N. Campbell; Helen C. Causton; Jeffrey H. Christiansen; Fabrice Daian; Delphine Dauga; Duncan Davidson; Gregory Gimenez; Young Ah Goo; Sean M. Grimmond; Thorsten Henrich; Bernhard G. Herrmann; Michael H. Johnson; Martin Korb; Jason C. Mills; Asa Oudes; Helen Parkinson; Laura E. Pascal; Nicolas Pollet; John Quackenbush; Mirana Ramialison; Martin Ringwald; David Salgado; Susanna-Assunta Sansone; Gavin Sherlock

One purpose of the biomedical literature is to report results in sufficient detail that the methods of data collection and analysis can be independently replicated and verified. Here we present reporting guidelines for gene expression localization experiments: the minimum information specification for in situ hybridization and immunohistochemistry experiments (MISFISHIE). MISFISHIE is modeled after the Minimum Information About a Microarray Experiment (MIAME) specification for microarray experiments. Both guidelines define what information should be reported without dictating a format for encoding that information. MISFISHIE describes six types of information to be provided for each experiment: experimental design, biomaterials and treatments, reporters, staining, imaging data and image characterizations. This specification has benefited the consortium within which it was developed and is expected to benefit the wider research community. We welcome feedback from the scientific community to help improve our proposal.


Current Biology | 2010

A cis-Regulatory Signature in Ascidians and Flies, Independent of Transcription Factor Binding Sites

Pierre Khoueiry; Ute Rothbächer; Yukio Ohtsuka; Fabrice Daian; Eric Frangulian; Agnès Roure; Inna Dubchak; Patrick Lemaire

BACKGROUND Transcription initiation is controlled by cis-regulatory modules. Although these modules are usually made of clusters of short transcription factor binding sites, a small minority of such clusters in the genome have cis-regulatory activity. This paradox is currently unsolved. RESULTS To identify what discriminates active from inactive clusters, we focused our attention on short topologically unconstrained clusters of two ETS and two GATA binding sites, similar to the early neural enhancer of Ciona intestinalis Otx. We first computationally identified 55 such clusters, conserved between the two Ciona genomes. In vivo assay of the activity of 19 hits identified three novel early neural enhancers, all located next to genes coexpressed with Otx. Optimization of ETS and GATA binding sites was not always sufficient to confer activity to inactive clusters. Rather, a dinucleotide sequence code associated to nucleosome depletion showed a robust correlation with enhancer potential. Identification of a large collection of Ciona regulatory regions revealed that predicted nucleosome depletion constitutes a general signature of Ciona enhancers, which is conserved between orthologous loci in the two Ciona genomes and which partitions conserved noncoding sequences into a major nucleosome-bound fraction and a minor nucleosome-free fraction with higher cis-regulatory potential. We also found this signature in a large fraction of short Drosophila cis-regulatory modules. CONCLUSION This study indicates that a sequence-based dinucleotide signature, previously associated with nucleosome depletion and independent of transcription factor binding sites, contributes to the definition of a local cis-regulatory potential in two metazoa, Ciona intestinalis and Drosophila melanogaster.


Developmental Biology | 2015

A pipeline for the systematic identification of non-redundant full-ORF cDNAs for polymorphic and evolutionary divergent genomes: Application to the ascidian Ciona intestinalis.

Michael J. Gilchrist; Daniel Sobral; Pierre Khoueiry; Fabrice Daian; Baptiste Laporte; Ilya Patrushev; Jun Matsumoto; Ken Dewar; Kenneth E. M. Hastings; Yutaka Satou; Patrick Lemaire; Ute Rothbächer

Genome-wide resources, such as collections of cDNA clones encoding for complete proteins (full-ORF clones), are crucial tools for studying the evolution of gene function and genetic interactions. Non-model organisms, in particular marine organisms, provide a rich source of functional diversity. Marine organism genomes are, however, frequently highly polymorphic and encode proteins that diverge significantly from those of well-annotated model genomes. The construction of full-ORF clone collections from non-model organisms is hindered by the difficulty of predicting accurately the N-terminal ends of proteins, and distinguishing recent paralogs from highly polymorphic alleles. We report a computational strategy that overcomes these difficulties, and allows for accurate gene level clustering of transcript data followed by the automated identification of full-ORFs with correct 5′- and 3′-ends. It is robust to polymorphism, includes paralog calling and does not require evolutionary proximity to well annotated model organisms. We developed this pipeline for the ascidian Ciona intestinalis, a highly polymorphic member of the divergent sister group of the vertebrates, emerging as a powerful model organism to study chordate gene function, Gene Regulatory Networks and molecular mechanisms underlying human pathologies. Using this pipeline we have generated the first full-ORF collection for a highly polymorphic marine invertebrate. It contains 19,163 full-ORF cDNA clones covering 60% of Ciona coding genes, and full-ORF orthologs for approximately half of curated human disease-associated genes.


CSH Protocols | 2011

Time-lapse imaging of live Phallusia embryos for creating 3D digital replicas.

François B. Robin; Delphine Dauga; Olivier Tassy; Daniel Sobral; Fabrice Daian; Patrick Lemaire

During embryonic development, cell behaviors that are tightly coordinated both spatially and temporally integrate at the tissue level and drive embryonic morphogenesis. Over the past 20 years, advances in imaging techniques, in particular, the development of confocal imaging, have opened a new world in biology, not only giving us access to a wealth of information, but also creating new challenges. It is sometimes difficult to make the best use of the recordings of the complex, inherently three-dimensional (3D) processes we now can observe. In particular, these data are often not directly suitable for even simple but conceptually fundamental quantifications. This article provides a method to fluorescently label and image structures of interest that will subsequently be reconstructed, such as cell membranes or nuclei. The protocol describes live imaging of Phallusia mammillata embryos, which are robust, colorless, and optically transparent with negligible autofluorescence. Their diameter ranges from 100 µm to 120 µm, which allows time-lapse microscopy of whole embryos using two-photon microscopy with a high-resolution objective. Although two-photon imaging is described in detail, any imaging technology that results in a z-stack may be used. The resulting image stacks can subsequently be digitalized and segmented to produce 3D embryo replicas that can be interfaced to a model organism database and used to quantify cell shapes.


BMC Evolutionary Biology | 2014

Rapid evolutionary responses of life history traits to different experimentally-induced pollutions in Caenorhabditis elegans

Morgan Dutilleul; Jean-Marc Bonzom; Catherine Lecomte; Benoit Goussen; Fabrice Daian; Simon Galas; Denis Réale

BackgroundAnthropogenic disturbances can lead to intense selection pressures on traits and very rapid evolutionary changes. Evolutionary responses to environmental changes, in turn, reflect changes in the genetic structure of the traits, accompanied by a reduction of evolutionary potential of the populations under selection. Assessing the effects of pollutants on the evolutionary responses and on the genetic structure of populations is thus important to understanding the mechanisms that entail specialization to novel environmental conditions or resistance to novel stressors.ResultsUsing an experimental evolution approach we exposed Caenorhabditis elegans populations to uranium, salt and alternating uranium-salt environments over 22 generations. We analyzed the changes in the average values of life history traits and the consequences at the demographic level in these populations. We also estimated the phenotypic and genetic (co)variance structure of these traits at different generations. Compared to populations in salt, populations in uranium showed a reduction of the stability of their trait structure and a higher capacity to respond by acclimation. However, the evolutionary responses of traits were generally lower for uranium compared to salt treatment; and the evolutionary responses to the alternating uranium–salt environment were between those of constant environments. Consequently, at the end of the experiment, the population rate of increase was higher in uranium than in salt and intermediate in the alternating environment.ConclusionsOur multigenerational experiment confirmed that rapid adaptation to different polluted environments may involve different evolutionary responses resulting in demographic consequences. These changes are partly explained by the effects of the pollutants on the genetic (co)variance structure of traits and the capacity of acclimation to novel conditions. Finally, our results in the alternating environment may confirm the selection of a generalist type in this environment.


PLOS ONE | 2012

Combined Drug Action of 2-Phenylimidazo[2,1-b]Benzothiazole Derivatives on Cancer Cells According to Their Oncogenic Molecular Signatures

Alessandro Furlan; Benjamin Roux; Fabienne Lamballe; Filippo Conti; Nathalie Issaly; Fabrice Daian; Jean-François Guillemot; Sylvie Richelme; Magali Contensin; Joan Bosch; Daniele Passarella; Oreste Piccolo; Rosanna Dono; Flavio Maina

The development of targeted molecular therapies has provided remarkable advances into the treatment of human cancers. However, in most tumors the selective pressure triggered by anticancer agents encourages cancer cells to acquire resistance mechanisms. The generation of new rationally designed targeting agents acting on the oncogenic path(s) at multiple levels is a promising approach for molecular therapies. 2-phenylimidazo[2,1-b]benzothiazole derivatives have been highlighted for their properties of targeting oncogenic Met receptor tyrosine kinase (RTK) signaling. In this study, we evaluated the mechanism of action of one of the most active imidazo[2,1-b]benzothiazol-2-ylphenyl moiety-based agents, Triflorcas, on a panel of cancer cells with distinct features. We show that Triflorcas impairs in vitro and in vivo tumorigenesis of cancer cells carrying Met mutations. Moreover, Triflorcas hampers survival and anchorage-independent growth of cancer cells characterized by “RTK swapping” by interfering with PDGFRβ phosphorylation. A restrained effect of Triflorcas on metabolic genes correlates with the absence of major side effects in vivo. Mechanistically, in addition to targeting Met, Triflorcas alters phosphorylation levels of the PI3K-Akt pathway, mediating oncogenic dependency to Met, in addition to Retinoblastoma and nucleophosmin/B23, resulting in altered cell cycle progression and mitotic failure. Our findings show how the unusual binding plasticity of the Met active site towards structurally different inhibitors can be exploited to generate drugs able to target Met oncogenic dependency at distinct levels. Moreover, the disease-oriented NCI Anticancer Drug Screen revealed that Triflorcas elicits a unique profile of growth inhibitory-responses on cancer cell lines, indicating a novel mechanism of drug action. The anti-tumor activity elicited by 2-phenylimidazo[2,1-b]benzothiazole derivatives through combined inhibition of distinct effectors in cancer cells reveal them to be promising anticancer agents for further investigation.


CSH Protocols | 2011

Creating 3D digital replicas of ascidian embryos from stacks of confocal images.

François B. Robin; Delphine Dauga; Olivier Tassy; Daniel Sobral; Fabrice Daian; Patrick Lemaire

During embryonic development, cell behaviors that are tightly coordinated both spatially and temporally integrate at the tissue level and drive embryonic morphogenesis. Over the past 20 years, advances in imaging techniques, in particular, the development of confocal imaging, have opened a new world in biology, not only giving us access to a wealth of information, but also creating new challenges. It is sometimes difficult to make the best use of the recordings of the complex, inherently three-dimensional (3D) processes we now can observe. In particular, these data are often not directly suitable for even simple but conceptually fundamental quantifications. This article describes a process whereby image stacks gathered from live or fixed ascidian embryos are digitalized and segmented to produce 3D embryo replicas. These replicas can then be interfaced via a 3D Virtual Embryo module to a model organism database (Aniseed) that allows one to relate the geometrical properties of cells and cell contacts to additional parameters such as cell lineage, cell fates, or the underlying genetic program. Such an integrated system can serve several general purposes. First, it makes it possible to quantify and better understand the dynamics of cell behaviors during embryonic development, including, for instance, the automatic detection of asymmetric cell divisions or the evolution of cell contacts. Second, the 3D Virtual Embryo software proposes a panel of mathematical shape descriptors to precisely quantify cellular geometries and generate a 3D identity card for each embryonic cell. Such reconstructions open the door to a detailed 3D simulation of morphogenesis.


Hepatology | 2017

A Phosphokinome-based screen uncovers new drug synergies for cancer driven by liver-specific gain of non-oncogenic RTKs.

Yannan Fan; Maria Arechederra; Sylvie Richelme; Fabrice Daian; Chiara Novello; Julien Calderaro; Luca Di Tommaso; Guillaume Morcrette; Sandra Rebouissou; Matteo Donadon; Emanuela Morenghi; Jessica Zucman-Rossi; Massimo Roncalli; Rosanna Dono; Flavio Maina

Genetic mutations leading to oncogenic variants of receptor tyrosine kinases (RTKs) are frequent events during tumorigenesis; however, the cellular vulnerability to nononcogenic RTK fluctuations has not been characterized. Here, we demonstrated genetically that in the liver subtle increases in wild‐type Met RTK levels are sufficient for spontaneous tumors in mice (Alb‐R26Met), conceptually illustrating how the shift from physiological to pathological conditions results from slight perturbations in signaling dosage. By analyzing 96 different genes in a panel of tumor samples, we demonstrated that liver tumorigenesis modeled by Alb‐R26Met mice corresponds to a subset of hepatocellular carcinoma (HCC) patients, thus establishing the clinical relevance of this HCC mouse model. We elucidated the regulatory networks underlying tumorigenesis by combining a phosphokinome screen with bioinformatics analysis. We then used the signaling diversity results obtained from Alb‐R26Met HCC versus control livers to design an “educated guess” drug screen, which led to the identification of new, deleterious synthetic lethal interactions. In particular, we report synergistic effects of mitogen‐activated protein kinase kinase, ribosomal S6 kinase, and cyclin‐dependent kinase 1/2 in combination with Bcl‐XL inhibition on a panel of liver cancer cells. Focusing on mitogen‐activated protein kinase kinase and Bcl‐XL targeting, we mechanistically demonstrated concomitant down‐regulation of phosphorylated extracellular signal–regulated kinase and myeloid cell leukemia 1 levels. Of note, a phosphorylated extracellular signal–regulated kinase+/BCL‐XL+/myeloid cell leukemia 1+ signature, deregulated in Alb‐R26Met tumors, characterizes a subgroup of HCC patients with poor prognosis. Conclusion: Our genetic studies highlight the heightened vulnerability of liver cells to subtle changes in nononcogenic RTK levels, allowing them to acquire a molecular profile that facilitates the full tumorigenic program; furthermore, our outcomes uncover new synthetic lethal interactions as potential therapies for a cluster of HCC patients. (Hepatology 2017;66:1644–1661).

Collaboration


Dive into the Fabrice Daian's collaboration.

Top Co-Authors

Avatar

Patrick Lemaire

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Olivier Tassy

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Delphine Dauga

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Daniel Sobral

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Flavio Maina

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Rosanna Dono

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre Khoueiry

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge