Fabrice N. Gravelat
McGill University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fabrice N. Gravelat.
PLOS Pathogens | 2013
Fabrice N. Gravelat; Anne Beauvais; Hong Liu; Mark J. Lee; Brendan D. Snarr; Dan Chen; Wenjie Xu; Ilia Kravtsov; Christopher M.Q. Hoareau; Ghyslaine Vanier; Mirjam Urb; Paolo Campoli; Qusai Al Abdallah; Mélanie Lehoux; Josée C. Chabot; Marie Claude Ouimet; Stefanie D. Baptista; Jörg H. Fritz; William C. Nierman; Jean Paul Latgé; Aaron P. Mitchell; Scott G. Filler; Thierry Fontaine; Donald C. Sheppard
Aspergillus fumigatus is the most common cause of invasive mold disease in humans. The mechanisms underlying the adherence of this mold to host cells and macromolecules have remained elusive. Using mutants with different adhesive properties and comparative transcriptomics, we discovered that the gene uge3, encoding a fungal epimerase, is required for adherence through mediating the synthesis of galactosaminogalactan. Galactosaminogalactan functions as the dominant adhesin of A. fumigatus and mediates adherence to plastic, fibronectin, and epithelial cells. In addition, galactosaminogalactan suppresses host inflammatory responses in vitro and in vivo, in part through masking cell wall β-glucans from recognition by dectin-1. Finally, galactosaminogalactan is essential for full virulence in two murine models of invasive aspergillosis. Collectively these data establish a role for galactosaminogalactan as a pivotal bifunctional virulence factor in the pathogenesis of invasive aspergillosis.
Eukaryotic Cell | 2009
Kwame Twumasi-Boateng; Yan Yu; Dan Chen; Fabrice N. Gravelat; William C. Nierman; Donald C. Sheppard
ABSTRACT Conidiation (asexual sporulation) is a key developmental process in filamentous fungi. We examined the gene regulatory roles of the Aspergillus fumigatus developmental transcription factors StuAp and BrlAp during conidiation. Conidiation was completely abrogated in an A. fumigatus ΔbrlA mutant and was severely impaired in a ΔstuA mutant. We determined the full genome conidiation transcriptomes of wild-type and ΔbrlA and ΔstuA mutant A. fumigatus and found that BrlAp and StuAp governed overlapping but distinct transcriptional programs. Six secondary metabolite biosynthetic clusters were found to be regulated by StuAp, while only one cluster exhibited BrlAp-dependent expression. The ΔbrlA mutant, but not the ΔstuA mutant, had impaired downregulation of genes encoding ribosomal proteins under nitrogen-limiting, but not carbon-limiting, conditions. Interestingly, inhibition of the target of rapamycin (TOR) pathway also caused downregulation of ribosomal protein genes in both the wild-type strain and the ΔbrlA mutant. Downregulation of these genes by TOR inhibition was associated with conidiation in the wild-type strain but not in the ΔbrlA mutant. Therefore, BrlAp-mediated repression of ribosomal protein gene expression is not downstream of the TOR pathway. Furthermore, inhibition of ribosomal protein gene expression is not sufficient to induce conidiation in the absence of BrlAp.
Cellular Microbiology | 2010
Fabrice N. Gravelat; Daniele E. Ejzykowicz; Lisa Y. Chiang; Josée C. Chabot; Mirjam Urb; K. Denyese Macdonald; Nadia Al-Bader; Scott G. Filler; Donald C. Sheppard
In medically important fungi, regulatory elements that control development and asexual reproduction often govern the expression of virulence traits. We therefore cloned the Aspergillus fumigatus developmental modifier MedA and characterized its role in conidiation, host cell interactions and virulence. As in the model organism Aspergillus nidulans, disruption of medA in A. fumigatus dramatically reduced conidiation. However, the conidiophore morphology was markedly different between the two species. Further, gene expression analysis suggested that MedA governs conidiation through different pathways in A. fumigatus compared with A. nidulans. The A. fumigatusΔmedA strain was impaired in biofilm production and adherence to plastic, as well as adherence to pulmonary epithelial cells, endothelial cells and fibronectin in vitro. The ΔmedA strain also had reduced capacity to damage pulmonary epithelial cells, and stimulate pro‐inflammatory cytokine mRNA and protein expression. Consistent with these results, the A. fumigatusΔmedA strain also exhibited reduced virulence in both an invertebrate and a mammalian model of invasive aspergillosis. Collectively, these results suggest that the downstream targets of A. fumigatus MedA mediate virulence, and may provide novel therapeutic targets for invasive aspergillosis.
Infection and Immunity | 2010
Nadia Al-Bader; Ghyslaine Vanier; Hong Liu; Fabrice N. Gravelat; Mirjam Urb; Christopher M.Q. Hoareau; Paolo Campoli; Josée C. Chabot; Scott G. Filler; Donald C. Sheppard
ABSTRACT Aspergillus fumigatus is a pathogenic mold which causes invasive, often fatal, pulmonary disease in immunocompromised individuals. Recently, proteins involved in the biosynthesis of trehalose have been linked with virulence in other pathogenic fungi. We found that the trehalose content increased during the developmental life cycle of A. fumigatus, throughout which putative trehalose synthase genes tpsA and tpsB were significantly expressed. The trehalose content of A. fumigatus hyphae also increased after heat shock but not in response to other stressors. This increase in trehalose directly correlated with an increase in expression of tpsB but not tpsA. However, deletion of both tpsA and tpsB was required to block trehalose accumulation during development and heat shock. The ΔtpsAB double mutant had delayed germination at 37°C, suggesting a developmental defect. At 50°C, the majority of ΔtpsAB spores were found to be nonviable, and those that were viable had severely delayed germination, growth, and subsequent sporulation. ΔtpsAB spores were also susceptible to oxidative stress. Surprisingly, the ΔtpsAB double mutant was hypervirulent in a murine model of invasive aspergillosis, and this increased virulence was associated with alterations in the cell wall and resistance to macrophage phagocytosis. Thus, while trehalose biosynthesis is required for a number of biological processes that both promote and inhibit virulence, in A. fumigatus the predominant effect is a reduction in pathogenicity. This finding contrasts sharply with those for other fungi, in which trehalose biosynthesis acts to enhance virulence.
PLOS Pathogens | 2015
Mark J. Lee; Hong Liu; Bridget M. Barker; Brendan D. Snarr; Fabrice N. Gravelat; Qusai Al Abdallah; Christina Gavino; Shane R. Baistrocchi; Hanna Ostapska; Tianli Xiao; Benjamin Ralph; Norma V. Solis; Mélanie Lehoux; Stefanie D. Baptista; Arsa Thammahong; Robert P. Cerone; Susan G. W. Kaminskyj; Marie Christine Guiot; Jean Paul Latgé; Thierry Fontaine; Donald C. Vinh; Scott G. Filler; Donald C. Sheppard
Of the over 250 Aspergillus species, Aspergillus fumigatus accounts for up to 80% of invasive human infections. A. fumigatus produces galactosaminogalactan (GAG), an exopolysaccharide composed of galactose and N-acetyl-galactosamine (GalNAc) that mediates adherence and is required for full virulence. Less pathogenic Aspergillus species were found to produce GAG with a lower GalNAc content than A. fumigatus and expressed minimal amounts of cell wall-bound GAG. Increasing the GalNAc content of GAG of the minimally pathogenic A. nidulans, either through overexpression of the A. nidulans epimerase UgeB or by heterologous expression of the A. fumigatus epimerase Uge3 increased the amount of cell wall bound GAG, augmented adherence in vitro and enhanced virulence in corticosteroid-treated mice to levels similar to A. fumigatus. The enhanced virulence of the overexpression strain of A. nidulans was associated with increased resistance to NADPH oxidase-dependent neutrophil extracellular traps (NETs) in vitro, and was not observed in neutropenic mice or mice deficient in NADPH-oxidase that are unable to form NETs. Collectively, these data suggest that cell wall-bound GAG enhances virulence through mediating resistance to NETs.
Infection and Immunity | 2008
Lisa Y. Chiang; Donald C. Sheppard; Fabrice N. Gravelat; Thomas F. Patterson; Scott G. Filler
ABSTRACT Invasive aspergillosis is characterized by hyphal invasion of the blood vessels, which contributes to the pathogenesis of this disease. During this angioinvasion, Aspergillus fumigatus interacts with the endothelial cell lining of the blood vessels. We investigated the response of vascular endothelial cells to A. fumigatus infection in vitro and in mouse models of invasive pulmonary aspergillosis. Infection with hyphae, but not with conidia, stimulated endothelial cells to synthesize E-selectin, vascular cell adhesion molecule 1 (VCAM-1), interleukin 8, and tumor necrosis factor alpha (TNF-α) in vitro. Killed hyphae induced approximately 40% less stimulation than did live hyphae. Endothelial cell stimulation required contact between the hyphae and endothelial cells but not endocytosis of the organisms. Studies with ΔgliP and ΔstuA null mutants of A. fumigatus indicated that the extent of endothelial cell stimulation was not influenced by gliotoxin or other StuA-dependent factors synthesized by A. fumigatus. In neutropenic mice infected with wild-type A. fumigatus, increased pulmonary expression of E-selectin, cytokine-induced neutrophil chemoattractant (KC), and TNF-α occurred only when neutropenia had resolved. In nonneutropenic mice immunosuppressed with corticosteroids, A. fumigatus stimulated earlier pulmonary expression of E-selectin, VCAM-1, and KC, while expression of intercellular adhesion molecule 1 and TNF-α was suppressed. In both mouse models, expression of E-selectin and KC was associated with high pulmonary fungal burden, angioinvasion, and neutrophil adherence to endothelial cells. Therefore, the expression of leukocyte adhesion molecules and secretion of proinflammatory cytokines by endothelial cells in response to A. fumigatus could enhance the host defense against this organism by contributing to the recruitment of activated leukocytes to sites of angioinvasion.
Molecular Microbiology | 2010
Hong Liu; Fabrice N. Gravelat; Lisa Y. Chiang; Dan Chen; Ghyslaine Vanier; Daniele E. Ejzykowicz; Ashraf S. Ibrahim; William C. Nierman; Donald C. Sheppard; Scott G. Filler
Relatively few transcription factors that govern the virulence of Aspergillus fumigatus are known. We constructed 11 A. fumigatus transcription factor mutants and screened them for altered virulence in Galleria mellonella larvae. We discovered that the zinc cluster transcription factor, AcuM, is essential for maximal virulence in this model, as well as in murine models of haematogenously disseminated and invasive pulmonary aspergillosis. Transcriptional profiling experiments suggested that AcuM suppresses sreA and induces hapX to stimulate expression of genes involved in both reductive iron assimilation and siderophore‐mediated iron uptake. Consistent with these results, a ΔacuM mutant had reduced iron incorporation, decreased extracellular siderophore production and impaired capacity to grow under iron‐limited conditions. Interestingly, an Aspergillus nidulansΔacuM mutant had normal extracellular siderophore production and growth under iron‐limited conditions, indicating that AcuM does not govern iron acquisition in this organism. A. fumigatus AcuM also regulated genes involved in gluconeogenesis, and the ΔacuM mutant had impaired growth on gluconeogenic carbon sources. Deletion of sreA in the ΔacuM mutant restored iron uptake, extracellular siderophore production and virulence, but not the defect in gluconeogenesis. Thus, AcuM represses SreA and thereby induces iron acquisition, a process that is essential for the maximal virulence of A. fumigatus.
Journal of Biological Chemistry | 2014
Mark J. Lee; Fabrice N. Gravelat; Robert P. Cerone; Stefanie D. Baptista; Paolo Campoli; Se-In Choe; Ilia Kravtsov; Evgeny Vinogradov; Carole Creuzenet; Hong Liu; Albert M. Berghuis; Jean Paul Latgé; Scott G. Filler; Thierry Fontaine; Donald C. Sheppard
Background: Aspergillus fumigatus produces two galactose-containing exopolysaccharides, galactomannan and galactosaminogalactan. Results: Galactosaminogalactan synthesis requires the UDP-glucose 4-epimerases, Uge5 and Uge3, whereas galactomannan synthesis requires Uge5 alone. Conclusion: Epimerases in A. fumigatus play both distinct and overlapping roles in exopolysaccharide synthesis. Significance: Uncovering the biosynthetic pathways of galactosaminogalactan will be crucial in developing therapeutics targeting this exopolysaccharide. The cell wall of Aspergillus fumigatus contains two galactose-containing polysaccharides, galactomannan and galactosaminogalactan, whose biosynthetic pathways are not well understood. The A. fumigatus genome contains three genes encoding putative UDP-glucose 4-epimerases, uge3, uge4, and uge5. We undertook this study to elucidate the function of these epimerases. We found that uge4 is minimally expressed and is not required for the synthesis of galactose-containing exopolysaccharides or galactose metabolism. Uge5 is the dominant UDP-glucose 4-epimerase in A. fumigatus and is essential for normal growth in galactose-based medium. Uge5 is required for synthesis of the galactofuranose (Galf) component of galactomannan and contributes galactose to the synthesis of galactosaminogalactan. Uge3 can mediate production of both UDP-galactose and UDP-N-acetylgalactosamine (GalNAc) and is required for the production of galactosaminogalactan but not galactomannan. In the absence of Uge5, Uge3 activity is sufficient for growth on galactose and the synthesis of galactosaminogalactan containing lower levels of galactose but not the synthesis of Galf. A double deletion of uge5 and uge3 blocked growth on galactose and synthesis of both Galf and galactosaminogalactan. This study is the first survey of glucose epimerases in A. fumigatus and contributes to our understanding of the role of these enzymes in metabolism and cell wall synthesis.
Infection and Immunity | 2008
Fabrice N. Gravelat; Thomas Doedt; Lisa Y. Chiang; Hong Liu; Scott G. Filler; Thomas F. Patterson; Donald C. Sheppard
ABSTRACT Very little is known about the developmental stages of Aspergillus fumigatus during invasive aspergillosis. We performed real-time reverse transcription-PCR analysis on lung samples from mice with invasive pulmonary aspergillosis to determine the expression of A. fumigatus genes that are expressed at specific stages of development. In established infection, A. fumigatus exhibited mRNA expression of genes specific to developmentally competent hyphae, such as stuA. In contrast, mRNA of genes expressed by conidia and precompetent hyphae was not detected. Many genes required for mycotoxin synthesis, including aspHS, gliP, mitF, and metAP, are known to be expressed by developmentally competent hyphae in vitro. Interestingly, each of these genes was expressed at significantly higher levels during invasive infection than in vitro. The expression of gliP mRNA in vitro was found to be highly dependent on culture conditions. Furthermore, gliP expression was found to be dependent on the transcription factor StuA both in vitro and in vivo. Therefore, developmentally competent hyphae predominate during established invasive infection, and many mycotoxin genes are expressed at high levels in vivo. These results highlight the importance of the evaluation of putative virulence factors expressed by competent hyphae and analysis of gene expression levels during invasive infection rather than in vitro alone.
Molecular Microbiology | 2009
Daniele E. Ejzykowicz; Marcel M.L. Cunha; Sonia Rozental; Norma V. Solis; Fabrice N. Gravelat; Donald C. Sheppard; Scott G. Filler
Aspergillus fumigatus causes serious and frequently fatal infections in immunocompromised patients. To investigate the regulation of virulence of this fungus, we constructed and analysed an A. fumigatus mutant that lacked the transcription factor Ace2, which influences virulence in other fungi. The Δace2 mutant had dysmorphic conidiophores, reduced conidia production and abnormal conidial cell wall architecture. This mutant produced an orange pigment when grown on solid media, although its conidia had normal pigmentation. Conidia of the Δace2 mutant were larger and had accelerated germination. The resulting germlings were resistant to hydrogen peroxide, but not other stressors. Non‐neutropenic mice that were immunosuppressed with cortisone acetate and infected with the Δace2 mutant had accelerated mortality, greater pulmonary fungal burden, and increased pulmonary inflammatory responses compared with mice infected with the wild‐type or Δace2::ace2‐complemented strains. The Δace2 mutant had reduced ppoC, ecm33 and ags3 mRNA expression. It is known that A. fumigatus mutants with absent or reduced expression of these genes have increased virulence in mice, as well as other phenotypic similarities to the Δace2 mutant. Therefore, reduced expression of these genes likely contributes to the increased virulence of the Δace2 mutant.