Fabrice Saez
French Institute of Health and Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fabrice Saez.
Journal of Clinical Investigation | 2009
Eléonore Chabory; Christelle Damon; Alain Lenoir; Gary Kauselmann; Hedrun Kern; Branko Zevnik; Catherine Garrel; Fabrice Saez; Rémi Cadet; Joëlle Henry-Berger; Michael Schoor; Ulrich Gottwald; Ursula Habenicht; Joël R. Drevet; Patrick Vernet
The mammalian epididymis provides sperm with an environment that promotes their maturation and protects them from external stresses. For example, it harbors an array of antioxidants, including non-conventional glutathione peroxidase 5 (GPX5), to protect them from oxidative stress. To explore the role of GPX5 in the epididymis, we generated mice that lack epididymal expression of the enzyme. Histological analyses of Gpx5-/- epididymides and sperm cells revealed no obvious defects. Furthermore, there were no apparent differences in the fertilization rate of sexually mature Gpx5-/- male mice compared with WT male mice. However, a higher incidence of miscarriages and developmental defects were observed when WT female mice were mated with Gpx5-deficient males over 1 year old compared with WT males of the same age. Flow cytometric analysis of spermatozoa recovered from Gpx5-null and WT male mice revealed that sperm DNA compaction was substantially lower in the cauda epididymides of Gpx5-null animals and that they suffered from DNA oxidative attacks. Real-time PCR analysis of enzymatic scavengers expressed in the mouse epididymis indicated that the cauda epididymidis epithelium of Gpx5-null male mice mounted an antioxidant response to cope with an excess of ROS. These observations suggest that GPX5 is a potent antioxidant scavenger in the luminal compartment of the mouse cauda epididymidis that protects spermatozoa from oxidative injuries that could compromise their integrity and, consequently, embryo viability.
Reproduction | 2013
Robert Sullivan; Fabrice Saez
Mammalian spermatozoa are unique cells in many ways, and the acquisition of their main function, i.e. fertilization capacity, is a multistep process starting in the male gonad and ending near the female egg for the few cells reaching this point. Owing to the unique character of this cell, the molecular pathways necessary to achieve its maturation also show some specific characteristics. One of the most striking specificities of the spermatozoon is that its DNA is highly compacted after the replacement of histones by protamines, making the classical processes of transcription and translation impossible. The sperm cells are thus totally dependent on their extracellular environment for their protection against oxidative stress, for example, or for the molecular changes occurring during the transit of the epididymis; the first organ in which post-testicular maturation takes place. The molecular mechanisms underlying sperm maturation are still largely unknown, but it has been shown in the past three decades that extracellular vesicles secreted by the male reproductive tract are involved in this process. This review will examine the roles played by two types of naturally occurring extracellular vesicles, epididymosomes and prostasomes, secreted by the epididymis and the prostate respectively. We will also describe how the use of artificial vesicles, liposomes, contributed to the study of male reproductive physiology.
Human Reproduction | 2008
Véronique Thimon; Gilles Frenette; Fabrice Saez; Michel Thabet; Robert Sullivan
BACKGROUND The epididymal epithelium secretes membranous vesicles, called epididymosomes, with which a complex mixture of proteins is associated. These vesicles transfer to spermatozoa selected proteins involved in sperm maturation. Epididymosomes in the human excurrent duct have been described, but their protein composition and possible functions are unknown. METHODS AND RESULTS Epididymosomes were collected during vasovasostomy procedures, purified and submitted to liquid chromatography with hybrid quadrupole time-of-flight mass spectrometry. From all the mass spectra generated, 1022 peptides allowed the identification of 146 different proteins. Identification of some of these proteins was confirmed by western blots. Furthermore, western blot showed that the protein composition of epididymosomes differed from that characterizing prostasomes; membranous vesicles secreted by the prostate. Organization of the epididymosomes proteome according to common functional features suggests that epididymosomes have multiple functions. In order to understand the origin of epididymosomes collected distally, microarray databases of caput, corpus and cauda epididymidis were analysed to determine where along the excurrent duct the encoded proteins associated to epididymosomes are synthesised. Results suggest that some proteins synthesized in the caput and corpus epididymidis are associated with epididymosomes collected distally. CONCLUSIONS Epididymosomes thus transit along the excurrent duct, and vesicles collected distally represent a mixed population.
Journal of Animal Science | 2010
E. Chabory; C. Damon; A. Lenoir; Joelle Henry-Berger; P. Vernet; Rémi Cadet; Fabrice Saez; Joël R. Drevet
In mammals, posttesticular epididymal sperm maturation is considered an essential step in the transformation of immature testicular gametes to mature spermatozoa capable of fertilization. Reactive oxygen species (ROS) have been shown to be key actors in this maturation process, and it is now clear that ROS are central for sperm physiology in processes such as sperm maturation and capacitation. However, during epididymal maturation and storage and until the onset of fertilization, oxidative damage is a threat spermatozoa must face more than any other cells. Spermatozoa were found to be extremely sensitive to oxidative attacks correlated with lipid peroxidation, DNA damage, and impaired sperm motility, all affecting fertilization. To control the quantity of H(2)O(2) in the vicinity of male gametes, mammalian epididymis uses a panel of nonenzymatic and enzymatic scavengers, among which the glutathione peroxidase (GPx) family is largely represented. Among the various GPx proteins expressed in the mammalian epididymis, GPx4 and GPx5 occupy unique positions and functions that are reviewed in this paper. This paper underlines the importance of the GPx protein family in determining the fertilizing potential of mammalian spermatozoa. This is particularly relevant in the field of mammalian fertility and infertility as well as in the development of assisted medical procreation technologies and male gamete preservation techniques that are extensively used in human and animal reproduction programs.
Free Radical Biology and Medicine | 2013
Anaïs Noblanc; Christelle Damon-Soubeyrand; Bouchta Karrich; Joelle Henry-Berger; Rémi Cadet; Fabrice Saez; Rachel Guiton; Laurent Janny; Hanae Pons-Rejraji; Juan G. Alvarez; Joël R. Drevet; Ayhan Kocer
Gamete DNA integrity is one key parameter conditioning reproductive success as well as the quality of life for the offspring. In particular, damage to the male nucleus can have profound negative effects on the outcome of fertilization. Because of the absence of repair activity of the quiescent mature spermatozoa it is easily subjected to nuclear damage, of which oxidative damage is by far the most prominent. In relation to the organization of the mammalian sperm nucleus we show here that one can correlate the nuclear regions of lower compaction with areas preferentially showing oxidative damage. More precisely, we show that oxidative DNA damage targets primarily histone-rich and nuclear matrix-attached domains located in the peripheral and basal regions of the mouse sperm nucleus. These particular sperm DNA domains were recently shown to be enriched in genes of paramount importance in postfertilization DNA replication events and in the onset of the embryonic developmental program. We propose that monitoring of sperm DNA oxidation using the type of assay presented here should be considered in clinical practice when one wants to estimate the integrity of the paternal nucleus along with more classical assays that essentially analyze DNA fragmentation and nucleus compaction.
Journal of Biological Chemistry | 2011
Aicha Jrad-Lamine; Joelle Henry-Berger; Pascal Gourbeyre; Christelle Damon-Soubeyrand; Alain Lenoir; Lydie Combaret; Fabrice Saez; Ayhan Kocer; Shigenobu Tone; Dietmar Fuchs; Wentao Zhu; Peter J. Oefner; David H. Munn; Andrew L. Mellor; Najoua Gharbi; Rémi Cadet; R. John Aitken; Joël R. Drevet
Indoleamine 2,3-dioxygenase (IDO) is the first and rate-limiting enzyme of tryptophan catabolism through the kynurenine pathway. Intriguingly, IDO is constitutively and highly expressed in the mammalian epididymis in contrast to most other tissues where IDO is induced by proinflammatory cytokines, such as interferons. To gain insight into the role of IDO in the physiology of the mammalian epididymis, we studied both wild type and Ido1−/−-deficient mice. In the caput epididymis of Ido1−/− animals, the lack of IDO activity was not compensated by other tryptophan-catabolizing enzymes and led to the loss of kynurenine production. The absence of IDO generated an inflammatory state in the caput epididymis as revealed by an increased accumulation of various inflammation markers. The absence of IDO also increased the tryptophan content of the caput epididymis and generated a parallel increase in caput epididymal protein content as a consequence of deficient proteasomal activity. Surprisingly, the lack of IDO expression had no noticeable impact on overall male fertility but did induce highly significant increases in both the number and the percentage of abnormal spermatozoa. These changes coincided with a significant decrease in white blood cell count in epididymal fluid compared with wild type mice. These data provide support for IDO playing a hitherto unsuspected role in sperm quality control in the epididymis involving the ubiquitination of defective spermatozoa and their subsequent removal.
Journal of Lipid Research | 2009
Aurélia Ouvrier; Rémi Cadet; Patrick Vernet; Brigitte Laillet; Jean-Michel Chardigny; Jean-Marc A. Lobaccaro; Joël R. Drevet; Fabrice Saez
Mammalian spermatozoa undergo important plasma membrane maturation steps during epididymal transit. Among these, changes in lipids and cholesterol are of particular interest as they are necessary for fertilization. However, molecular mechanisms regulating these transformations inside the epididymis are still poorly understood. Liver X receptors (LXRs), the nuclear receptors for oxysterols, are of major importance in intracellular cholesterol homeostasis, and LXR−/−-deficient male mice have already been shown to have reduced fertility at an age of 5 months and complete sterility for 9-month-old animals. This sterility phenotype is associated with testes and caput epididymides epithelial defects. The research presented here was aimed at investigating how LXRs act in the male caput epididymidis by analyzing key actors in cholesterol homeostasis. We show that accumulation of cholesteryl esters in LXR−/− male mice is associated with a specific loss of ABCA1 and an increase in apoptosis of apical cells of the proximal caput epididymidis. ATP-binding cassette G1 (ABCG1) and scavenger receptor B1 (SR-B1), two other cholesterol transporters, show little if any modifications. Our study also revealed that SR-B1 appears to have a peculiar expression pattern along the epididymal duct. These results should help in understanding the functional roles of LXR in cholesterol trafficking processes in caput epididymidis.
PLOS ONE | 2012
Anaïs Noblanc; Manon Peltier; Christelle Damon-Soubeyrand; Nicolas Kerchkove; Eléonore Chabory; Patrick Vernet; Fabrice Saez; Rémi Cadet; Laurent Janny; Hanae Pons-Rejraji; Marcus Conrad; Joël R. Drevet; Ayhan Kocer
We report here that spermatozoa of mice lacking both the sperm nucleaus glutathione peroxidase 4 (snGPx4) and the epididymal glutathione peroxidase 5 (GPx5) activities display sperm nucleus structural abnormalities including delayed and defective nuclear compaction, nuclear instability and DNA damage. We show that to counteract the GPx activity losses, the epididymis of the double KO animals mounted an antioxydant response resulting in a strong increase in the global H2O2-scavenger activity especially in the cauda epididymis. Quantitative RT-PCR data show that together with the up-regulation of epididymal scavengers (of the thioredoxin/peroxiredoxin system as well as glutathione-S-transferases) the epididymis of double mutant animals increased the expression of several disulfide isomerases in an attempt to recover normal disulfide-bridging activity. Despite these compensatory mechanisms cauda-stored spermatozoa of double mutant animals show high levels of DNA oxidation, increased fragmentation and greater susceptibility to nuclear decondensation. Nevertheless, the enzymatic epididymal salvage response is sufficient to maintain full fertility of double KO males whatever their age, crossed with young WT female mice.
PLOS ONE | 2011
Aurélia Ouvrier; Georges Alves; Christelle Damon-Soubeyrand; Geoffroy Marceau; Rémi Cadet; Laurent Janny; Florence Brugnon; Ayhan Kocer; Aurélien Pommier; Jean-Marc A. Lobaccaro; Joël R. Drevet; Fabrice Saez
This work shows that an overload of dietary cholesterol causes complete infertility in dyslipidemic male mice (the Liver X Receptor-deficient mouse model). Infertility resulted from post-testicular defects affecting the fertilizing potential of spermatozoa. Spermatozoa of cholesterol-fed lxr−/− animals were found to be dramatically less viable and motile, and highly susceptible to undergo a premature acrosome reaction. We also provide evidence, that this lipid-induced infertility is associated with the accelerated appearance of a highly regionalized epididymal phenotype in segments 1 and 2 of the caput epididymidis that was otherwise only observed in aged LXR-deficient males. The epididymal epithelial phenotype is characterized by peritubular accumulation of cholesteryl ester lipid droplets in smooth muscle cells lining the epididymal duct, leading to their transdifferentiation into foam cells that eventually migrate through the duct wall, a situation that resembles the inflammatory atherosclerotic process. These findings establish the high level of susceptibility of epididymal sperm maturation to dietary cholesterol overload and could partly explain reproductive failures encountered by young dyslipidemic men as well as ageing males wishing to reproduce.
PLOS ONE | 2013
Aicha Jrad-Lamine; Joelle Henry-Berger; Christelle Damon-Soubeyrand; Fabrice Saez; Ayhan Kocer; Laurent Janny; Hanae Pons-Rejraji; David H. Munn; Andrew L. Mellor; Najoua Gharbi; Rémi Cadet; Rachel Guiton; Robert John Aitken; Joël R. Drevet
The epididymis maintains a state of immune tolerance towards spermatozoa while also protecting them and itself against infection and acute inflammation. The immunosuppressive enzyme indoleamine 2,3-dioxygenase 1 (Ido1) participates in this delicate local equilibrium. Using the mouse Ido1−/− model, we show here that the absence of IDO1 expression leads in the epididymis but not in serum to (1) an increase in the inflammatory state as evidenced by changes in the content of cytokines and chemokines, (2) the engagement of a Th1-driven inflammatory response as evidenced by changes in the Th17/Treg as well as Th1/Th2 equilibria, as well as (3) differences in the content of lipid intermediates classically involved in inflammation. Despite this more pronounced inflammatory state, Ido1−/− animals succeed in preserving the local epididymal immune situation due to the activation of compensatory mechanisms that are discussed.