Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabrisia Ambrosio is active.

Publication


Featured researches published by Fabrisia Ambrosio.


Journal of Biological Chemistry | 2007

Relationships between Transforming Growth Factor-β1, Myostatin, and Decorin IMPLICATIONS FOR SKELETAL MUSCLE FIBROSIS

Jinhong Zhu; Yong Li; Wei Shen; Chunping Qiao; Fabrisia Ambrosio; Mitra Lavasani; Masahiro Nozaki; Maria F. Branca; Johnny Huard

Recent studies have shown that myostatin, first identified as a negative regulator of skeletal muscle growth, may also be involved in the formation of fibrosis within skeletal muscle. In this study, we further explored the potential role of myostatin in skeletal muscle fibrosis, as well as its interaction with both transforming growth factor-β1 and decorin. We discovered that myostatin stimulated fibroblast proliferation in vitro and induced its differentiation into myofibroblasts. We further found that transforming growth factor-β1 stimulated myostatin expression, and conversely, myostatin stimulated transforming growth factor-β1 secretion in C2C12 myoblasts. Decorin, a small leucine-rich proteoglycan, was found to neutralize the effects of myostatin in both fibroblasts and myoblasts. Moreover, decorin up-regulated the expression of follistatin, an antagonist of myostatin. The results of in vivo experiments showed that myostatin knock-out mice developed significantly less fibrosis and displayed better skeletal muscle regeneration when compared with wild-type mice at 2 and 4 weeks following gastrocnemius muscle laceration injury. In wild-type mice, we found that transforming growth factor-β1 and myostatin co-localize in myofibers in the early stages of injury. Recombinant myostatin protein stimulated myofibers to express transforming growth factor-β1 in skeletal muscles at early time points following injection. In summary, these findings define a fibrogenic property of myostatin and suggest the existence of co-regulatory relationships between transforming growth factor-β1, myostatin, and decorin.


Science Translational Medicine | 2014

An Acellular Biologic Scaffold Promotes Skeletal Muscle Formation in Mice and Humans with Volumetric Muscle Loss

Brian M. Sicari; J. Peter Rubin; Christopher L. Dearth; Matthew T. Wolf; Fabrisia Ambrosio; Michael L. Boninger; Neill J. Turner; Douglas J. Weber; Tyler Simpson; Aaron Wyse; Elke H.P. Brown; Jenna L. Dziki; Lee E. Fisher; Spencer A. Brown; Stephen F. Badylak

Scaffolds composed of cell-free extracellular matrix promote de novo formation of functional skeletal muscle tissue in sites of volumetric muscle loss. Cell-Free Matrix Refills Muscle In traumatic accidents, or even in surgery, large amounts of skeletal muscle can be lost, resulting in pain and loss of function. Although muscle has the ability to regenerate naturally, it cannot refill massive defects, such as those seen in volumetric muscle loss (VML). In response, Sicari and colleagues devised a biomaterial scaffold that can be surgically implanted at the site of VML, encouraging local muscle regeneration and improving function in both mice and humans. The biomaterial used in this study was made up of bladder tissue that had been stripped of cells, leaving behind only the protein scaffold called the extracellular matrix (ECM). Sicari et al. first tested it in a mouse model of VML. In mice treated with ECM, they saw signs of new skeletal muscle formation, characterized by muscle markers desmin and myosin heavy chain, as well as striated (striped) tissue organization. The new muscle also appeared to be innervated, which is necessary for function. The authors translated this preclinical work into a clinical study of five patients with VML and saw outcomes similar to the mice. Six months after ECM implantation at the site of muscle loss, all patients showed signs of new muscle and blood vessels. Three of the five patients showed 20% or greater improvement in limb strength during physical therapy. The two patients without functional changes did report improvements in nonfunctional tasks, such as balance, as well as an improvement in quality of life. Because of the widespread availability and known safety of cell-free ECM-based materials, the approach described by Sicari et al. may translate to regeneration of other human tissues in addition to muscle. Biologic scaffolds composed of naturally occurring extracellular matrix (ECM) can provide a microenvironmental niche that alters the default healing response toward a constructive and functional outcome. The present study showed similarities in the remodeling characteristics of xenogeneic ECM scaffolds when used as a surgical treatment for volumetric muscle loss in both a preclinical rodent model and five male patients. Porcine urinary bladder ECM scaffold implantation was associated with perivascular stem cell mobilization and accumulation within the site of injury, and de novo formation of skeletal muscle cells. The ECM-mediated constructive remodeling was associated with stimulus-responsive skeletal muscle in rodents and functional improvement in three of the five human patients.


Molecular Therapy | 2009

Effect of VEGF on the Regenerative Capacity of Muscle Stem Cells in Dystrophic Skeletal Muscle

Bridget M. Deasy; Joseph M. Feduska; Thomas Payne; Yong Li; Fabrisia Ambrosio; Johnny Huard

We have isolated a population of muscle-derived stem cells (MDSCs) that, when compared with myoblasts, display an improved regeneration capacity, exhibit better cell survival, and improve myogenesis and angiogenesis. In addition, we and others have observed that the origin of the MDSCs may reside within the blood vessel walls (endothelial cells and pericytes). Here, we investigated the role of vascular endothelial growth factor (VEGF)-mediated angiogenesis in MDSC transplantation-based skeletal muscle regeneration in mdx mice (an animal model of muscular dystrophy). We studied MDSC and MDSC transduced to overexpress VEGF; no differences were observed in vitro in terms of phenotype or myogenic differentiation. However, after in vivo transplantation, we observe an increase in angiogenesis and endogenous muscle regeneration as well as a reduction in muscle fibrosis in muscles transplanted with VEGF-expressing cells when compared to control cells. In contrast, we observe a significant decrease in vascularization and an increase in fibrosis in the muscles transplanted with MDSCs expressing soluble forms-like tyrosine kinase 1 (sFlt1) (VEGF-specific antagonist) when compared to control MDSCs. Our results indicate that VEGF-expressing cells do not increase the number of dystrophin-positive fibers in the injected mdx muscle, when compared to the control MDSCs. Together the results suggest that the transplantation of VEGF-expressing MDSCs improved skeletal muscle repair through modulation of angiogenesis, regeneration and fibrosis in the injected mdx skeletal muscle.


American Journal of Sports Medicine | 2008

Improved Muscle Healing after Contusion Injury by the Inhibitory Effect of Suramin on Myostatin, a Negative Regulator of Muscle Growth

Masahiro Nozaki; Yong Li; Jinhong Zhu; Fabrisia Ambrosio; Kenji Uehara; Freddie H. Fu; Johnny Huard

Background Muscle contusions are the most common muscle injuries in sports medicine. Although these injuries are capable of healing, incomplete functional recovery often occurs. Hypothesis Suramin enhances muscle healing by both stimulating muscle regeneration and preventing fibrosis in contused skeletal muscle. Study Design Controlled laboratory study. Methods In vitro: Myoblasts (C2C12 cells) and muscle-derived stem cells (MDSCs) were cultured with suramin, and the potential of suramin to induce their differentiation was evaluated. Furthermore, MDSCs were cocultured with suramin and myostatin (MSTN) to monitor the capability of suramin to neutralize the effect of MSTN. In vivo: Varying concentrations of suramin were injected in the tibialis anterior muscle of mice 2 weeks after muscle contusion injury. Muscle regeneration and scar tissue formation were evaluated by histologic analysis and functional recovery was measured by physiologic testing Results In vitro: Suramin stimulated the differentiation of myoblasts and MDSCs in a dose-dependent manner. Moreover, suramin neutralized the inhibitory effect of MSTN on MDSC differentiation. In vivo: Suramin treatment significantly promoted muscle regeneration, decreased fibrosis formation, reduced myostatin expression in injured muscle, and increased muscle strength after contusion injury. Conclusion Intramuscular injection of suramin after a contusion injury improved overall skeletal muscle healing. Suramin enhanced myoblast and MDSC differentiation and neutralized MSTNs negative effect on myogenic differentiation in vitro, which suggests a possible mechanism for the beneficial effects that this pharmacologic agent exhibits in vivo. Clinical Relevance These findings could contribute to the development of biological treatments to aid in muscle healing after experiencing a muscle injury.


Journal of Spinal Cord Medicine | 2005

Biomechanics and strength of manual wheelchair users.

Fabrisia Ambrosio; Michael L. Boninger; Aaron L. Souza; Shirley G. Fitzgerald; Alicia M Koontz; Rory A. Cooper

Abstract Background/Objective: Previous investigations have identified muscular imbalance in the shoulder as a source of pain and injury in manual wheelchair users. Our aim was to determine whether a correlation exists between strength and push rim biomechanical variables including: tangential (motive) force (Ft), radial force (Fr), axial force (Fz), total (resultant) force (FR), fraction of effective force (FEF), and cadence. Methods: Peak isokinetic shoulder strength (flexion [FLX], extension [EXT], abduction [ABD], adduction [ADD], internal rotation [IR], and external rotation [ER]) was tested in 22 manual wheelchair users with a BioDex system for 5 repetitions at 60°/S. Subjects then propelled their own manual wheelchair at 2 speeds, 0.9 m/s (2 mph) and 1.8 m/s (4 mph), for 20 seconds, during which kinematic (OPTOTRAK) and kinetic (SMARTWHEEL) data were collected. Peak isokinetic forces in the cardinal planes were correlated with push rim biomechanical variables. Results: All peak torque strength variables correlated significantly (P = 0.05) with Ft, Fr, and FR, but were not significantly correlated with Fz, FEF, or cadence. Finally, there were no relationships found between muscle strength ratios (for example, FLX/EXT) and Ft, Fr, FR, Fz, or FEF. Conclusion: There was a correlation between strength and force imparted to the pushrim among wheelchair users; however, there was no correlation found in wheelchair propulsion or muscle imbalance. Clinicians should be aware of this, and approach strength training and training in wheelchair propulsion techniques separately.


American Journal of Physical Medicine & Rehabilitation | 2009

The effect of muscle loading on skeletal muscle regenerative potential : an update of current research findings relating to aging and neuromuscular pathology

Fabrisia Ambrosio; Fawzi Kadi; Jan Lexell; G. Kelley Fitzgerald; Michael L. Boninger; Johnny Huard

Skeletal muscle is a dynamic tissue with a remarkable ability to continuously respond to environmental stimuli. Among its adaptive responses is the widely investigated ability of skeletal muscle to regenerate after loading or injury or both. Although significant basic science efforts have been dedicated to better understand the underlying mechanism controlling skeletal muscle regeneration, there has been relatively little impact in the clinical approaches used to treat skeletal muscle injuries and wasting. The purpose of this review article is to provide an overview of the basic biology of satellite cell function in response to muscle loading and to relate these findings in the context of aging and neuromuscular pathology for the rehabilitation medicine specialist.


Muscle & Nerve | 2011

EXERCISE AND DUCHENNE MUSCULAR DYSTROPHY: TOWARD EVIDENCE-BASED EXERCISE PRESCRIPTION

Chad D. Markert; Fabrisia Ambrosio; Jarrod A. Call; Robert W. Grange

To develop a rational framework for answering questions about the role of exercise in Duchenne muscular dystrophy (DMD), we focused on five pathophysiological mechanisms and offer brief hypotheses regarding how exercise may beneficially modulate pertinent cellular and molecular pathways. We aimed to provide an integrative overview of mechanisms of DMD pathology that may improve or worsen as a result of exercise. We also sought to stimulate discussion of what outcomes/dependent variables most appropriately measure these mechanisms, with the purpose of defining criteria for well‐designed, controlled studies of exercise in DMD. The five mechanisms include pathways that are both intrinsic and extrinsic to the diseased muscle cells. Muscle Nerve 43: 464–478, 2011


American Journal of Physical Medicine & Rehabilitation | 2014

Targeted rehabilitation after extracellular matrix scaffold transplantation for the treatment of volumetric muscle loss.

Natalie E. Gentile; Kristen M. Stearns; Elke H.P. Brown; J. Peter Rubin; Michael L. Boninger; Christopher L. Dearth; Fabrisia Ambrosio; Stephen F. Badylak

ABSTRACTRehabilitation therapy is an important aspect of recovery after volumetric muscle loss. However, the traditional rehabilitation approach involves a period of rest and passive loading followed by gradual active loading. Extracellular matrix is a naturally occurring material consisting of structural proteins that provide mechanical strength, structural support, and functional molecules with diverse bioactive properties. There is evidence to suggest that the addition of aggressive regenerative rehabilitation protocols immediately after surgical implantation of an extracellular matrix scaffold to an area of volumetric muscle loss has significant benefits for extracellular matrix remodeling. Rehabilitation exercises likely provide the needed mechanical signals to encourage cell migration and site-specific differentiation in the temporal framework required for constructive remodeling. Herein, the authors review the literature and present an example of an aggressive rehabilitation program implemented immediately after extracellular matrix transplantation into a severely injured quadriceps muscle.


PLOS ONE | 2013

Neuromuscular Electrical Stimulation as a Method to Maximize the Beneficial Effects of Muscle Stem Cells Transplanted into Dystrophic Skeletal Muscle

Giovanna Distefano; Ricardo Ferrari; Christopher Weiss; Bridget M. Deasy; Michael L. Boninger; G. Kelley Fitzgerald; Johnny Huard; Fabrisia Ambrosio

Cellular therapy is a potential approach to improve the regenerative capacity of damaged or diseased skeletal muscle. However, its clinical use has often been limited by impaired donor cell survival, proliferation and differentiation following transplantation. Additionally, functional improvements after transplantation are all-too-often negligible. Because the host microenvironment plays an important role in the fate of transplanted cells, methods to modulate the microenvironment and guide donor cell behavior are warranted. The purpose of this study was to investigate whether the use of neuromuscular electrical stimulation (NMES) for 1 or 4 weeks following muscle-derived stem cell (MDSC) transplantation into dystrophic skeletal muscle can modulate the fate of donor cells and enhance their contribution to muscle regeneration and functional improvements. Animals submitted to 4 weeks of NMES after transplantation demonstrated a 2-fold increase in the number of dystrophin+ myofibers as compared to control transplanted muscles. These findings were concomitant with an increased vascularity in the MDSC+NMES group when compared to non-stimulated counterparts. Additionally, animals subjected to NMES (with or without MDSC transplantation) presented an increased maximal specific tetanic force when compared to controls. Although cell transplantation and/or the use of NMES resulted in no changes in fatigue resistance, the combination of both MDSC transplantation and NMES resulted in a faster recovery from fatigue, when compared to non-injected and non-stimulated counterparts. We conclude that NMES is a viable method to improve MDSC engraftment, enhance dystrophic muscle strength, and, in combination with MDSC transplantation, improve recovery from fatigue. These findings suggest that NMES may be a clinically-relevant adjunct approach for cell transplantation into skeletal muscle.


Pm&r | 2009

Mesenchymal Stem Cells: Emerging Therapy for Duchenne Muscular Dystrophy

Chad D. Markert; Anthony Atala; Jennifer K. Cann; George J. Christ; Mark E. Furth; Fabrisia Ambrosio; Martin K. Childers

Multipotent cells that can give rise to bone, cartilage, fat, connective tissue, and skeletal and cardiac muscle are termed mesenchymal stem cells. These cells were first identified in the bone marrow, distinct from blood‐forming stem cells. Based on the embryologic derivation, availability, and various pro‐regenerative characteristics, research exploring their use in cell therapy shows great promise for patients with degenerative muscle diseases and a number of other conditions. In this review, the authors explore the potential for mesenchymal stem cell therapy in the emerging field of regenerative medicine with a focus on treatment for Duchenne muscular dystrophy.

Collaboration


Dive into the Fabrisia Ambrosio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johnny Huard

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge