Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabrizia Urbinati is active.

Publication


Featured researches published by Fabrizia Urbinati.


Journal of Clinical Investigation | 2007

Multilineage hematopoietic reconstitution without clonal selection in ADA-SCID patients treated with stem cell gene therapy

Alessandro Aiuti; Barbara Cassani; Grazia Andolfi; Massimiliano Mirolo; Luca Biasco; Fabrizia Urbinati; Cristina Valacca; Samantha Scaramuzza; Memet Aker; Shimon Slavin; Matteo Cazzola; Daniela Sartori; Alessandro Ambrosi; Clelia Di Serio; Maria Grazia Roncarolo; Fulvio Mavilio; Claudio Bordignon

Gene transfer into HSCs is an effective treatment for SCID, although potentially limited by the risk of insertional mutagenesis. We performed a genome-wide analysis of retroviral vector integrations in genetically corrected HSCs and their multilineage progeny before and up to 47 months after transplantation into 5 patients with adenosine deaminase-deficient SCID. Gene-dense regions, promoters, and transcriptionally active genes were preferred retroviral integrations sites (RISs) both in preinfusion transduced CD34(+) cells and in vivo after gene therapy. The occurrence of insertion sites proximal to protooncogenes or genes controlling cell growth and self renewal, including LMO2, was not associated with clonal selection or expansion in vivo. Clonal analysis of long-term repopulating cell progeny in vivo revealed highly polyclonal T cell populations and shared RISs among multiple lineages, demonstrating the engraftment of multipotent HSCs. These data have important implications for the biology of retroviral vectors, the dynamics of genetically modified HSCs, and the safety of gene therapy.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Retroviral vector integration deregulates gene expression but has no consequence on the biology and function of transplanted T cells

Chiara Bonini; Zulma Magnani; Fabrizia Urbinati; Daniela Sartori; Sara Muraro; Enrico Tagliafico; Attilio Bondanza; Maria Teresa Lupo Stanghellini; Massimo Bernardi; Alessandra Pescarollo; Fabio Ciceri; Claudio Bordignon; Fulvio Mavilio

The use of retroviral vectors in gene therapy has raised safety concerns for the genotoxic risk associated with their uncontrolled insertion into the human genome. We have analyzed the consequences of retroviral transduction in T cells from leukemic patients treated with allogeneic stem cell transplantation and donor lymphocytes genetically modified with a suicide gene (HSV-TK). Retroviral vectors integrate preferentially within or near transcribed regions of the genome, with a preference for sequences around promoters and for genes active in T cells at the time of transduction. Quantitative transcript analysis shows that one fifth of these integrations affect the expression of nearby genes. However, transduced T cell populations maintain remarkably stable gene expression profiles, phenotype, biological functions, and immune repertoire in vivo, with no evidence of clonal selection up to 9 yr after administration. Analysis of integrated proviruses in transduced cells before and after transplantation indicates that integrations interfering with normal T cell function are more likely to lead to clonal ablation than expansion in vivo. Despite the potentially dangerous interactions with the T cell genome, retroviral integration has therefore little consequence on the safety and efficacy of T cell transplantation.


Blood | 2015

Correction of the sickle-cell disease mutation in human hematopoietic stem/progenitor cells

Megan D. Hoban; Gregory J. Cost; Matthew C. Mendel; Zulema Romero; Michael L. Kaufman; Alok V. Joglekar; Michelle Ho; Dianne Lumaquin; David Gray; Georgia R. Lill; Aaron R. Cooper; Fabrizia Urbinati; Shantha Senadheera; Allen Zhu; Pei-Qi Liu; David Paschon; Lei Zhang; Edward J. Rebar; Andrew Wilber; Xiaoyan Wang; Philip D. Gregory; Michael C. Holmes; Andreas Reik; Roger P. Hollis; Donald B. Kohn

Sickle cell disease (SCD) is characterized by a single point mutation in the seventh codon of the β-globin gene. Site-specific correction of the sickle mutation in hematopoietic stem cells would allow for permanent production of normal red blood cells. Using zinc-finger nucleases (ZFNs) designed to flank the sickle mutation, we demonstrate efficient targeted cleavage at the β-globin locus with minimal off-target modification. By co-delivering a homologous donor template (either an integrase-defective lentiviral vector or a DNA oligonucleotide), high levels of gene modification were achieved in CD34(+) hematopoietic stem and progenitor cells. Modified cells maintained their ability to engraft NOD/SCID/IL2rγ(null) mice and to produce cells from multiple lineages, although with a reduction in the modification levels relative to the in vitro samples. Importantly, ZFN-driven gene correction in CD34(+) cells from the bone marrow of patients with SCD resulted in the production of wild-type hemoglobin tetramers.


Science Translational Medicine | 2016

Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells

Mark A. DeWitt; Wendy Magis; Nicolas Bray; Tianjiao Wang; Jennifer R. Berman; Fabrizia Urbinati; Seok Jin Heo; Therese Mitros; Denise P. Muñoz; Dario Boffelli; Donald B. Kohn; Mark C. Walters; Dana Carroll; David I. K. Martin; Jacob E. Corn

Hematopoietic stem cells from patients with sickle cell disease can be edited by CRISPR/Cas9 and maintain the edits in vivo. Hammering out the sickle cell mutation Sickle cell disease is a genetic disorder caused by a mutation in one of the hemoglobin genes, which causes deformation of red blood cells and results in occlusion of blood vessels, severe pain crises, and progressive organ injury. To correct the mutation that causes this disease, DeWitt et al. modified hematopoietic stem cells from sickle cell disease patients using a CRISPR/Cas9 gene editing approach. The authors showed that the corrected cells successfully engrafted in a mouse model and produced enough normal hemoglobin to have a potential clinical benefit in the setting of sickle cell disease. Genetic diseases of blood cells are prime candidates for treatment through ex vivo gene editing of CD34+ hematopoietic stem/progenitor cells (HSPCs), and a variety of technologies have been proposed to treat these disorders. Sickle cell disease (SCD) is a recessive genetic disorder caused by a single-nucleotide polymorphism in the β-globin gene (HBB). Sickle hemoglobin damages erythrocytes, causing vasoocclusion, severe pain, progressive organ damage, and premature death. We optimize design and delivery parameters of a ribonucleoprotein (RNP) complex comprising Cas9 protein and unmodified single guide RNA, together with a single-stranded DNA oligonucleotide donor (ssODN), to enable efficient replacement of the SCD mutation in human HSPCs. Corrected HSPCs from SCD patients produced less sickle hemoglobin RNA and protein and correspondingly increased wild-type hemoglobin when differentiated into erythroblasts. When engrafted into immunocompromised mice, ex vivo treated human HSPCs maintain SCD gene edits throughout 16 weeks at a level likely to have clinical benefit. These results demonstrate that an accessible approach combining Cas9 RNP with an ssODN can mediate efficient HSPC genome editing, enables investigator-led exploration of gene editing reagents in primary hematopoietic stem cells, and suggests a path toward the development of new gene editing treatments for SCD and other hematopoietic diseases.


Molecular Therapy | 2009

Genotoxic Potential of Lineage-specific Lentivirus Vectors Carrying the β-Globin Locus Control Region

Paritha Arumugam; Tomoyasu Higashimoto; Fabrizia Urbinati; Ute Modlich; Shawna Nestheide; Ping Xia; Catherine Fox; Andrea Corsinotti; Christopher Baum; Punam Malik

Insertional mutagenesis by long terminal repeat (LTR) enhancers in γ-retrovirus-based vectors (GVs) in clinical trials has prompted deeper investigations into vector genotoxicity. Experimentally, self-inactivating (SIN) lentivirus vectors (LVs) and GV containing internal promoters/enhancers show reduced genotoxicity, although strong ubiquitously-active enhancers dysregulate genes independent of vector type/design. Herein, we explored the genotoxicity of β-globin (BG) locus control region (LCR), a strong long-range lineage-specific-enhancer, with/without insulator (Ins) elements in LV using primary hematopoietic progenitors to generate in vitro immortalization (IVIM) assay mutants. LCR-containing LV had ~200-fold lower transforming potential, compared to the conventional GV. The LCR perturbed expression of few genes in a 300 kilobase (kb) proviral vicinity but no upregulation of genes associated with cancer, including an erythroid-specific transcription factor occurred. A further twofold reduction in transforming activity was observed with insulated LCR-containing LV. Our data indicate that toxicology studies of LCR-containing LV in mice will likely not yield any insertional oncogenesis with the numbers of animals that can be practically studied.Insertional mutagenesis by long terminal repeat (LTR) enhancers in gamma-retrovirus-based vectors (GVs) in clinical trials has prompted deeper investigations into vector genotoxicity. Experimentally, self-inactivating (SIN) lentivirus vectors (LVs) and GV containing internal promoters/enhancers show reduced genotoxicity, although strong ubiquitously-active enhancers dysregulate genes independent of vector type/design. Herein, we explored the genotoxicity of beta-globin (BG) locus control region (LCR), a strong long-range lineage-specific-enhancer, with/without insulator (Ins) elements in LV using primary hematopoietic progenitors to generate in vitro immortalization (IVIM) assay mutants. LCR-containing LV had approximately 200-fold lower transforming potential, compared to the conventional GV. The LCR perturbed expression of few genes in a 300 kilobase (kb) proviral vicinity but no upregulation of genes associated with cancer, including an erythroid-specific transcription factor occurred. A further twofold reduction in transforming activity was observed with insulated LCR-containing LV. Our data indicate that toxicology studies of LCR-containing LV in mice will likely not yield any insertional oncogenesis with the numbers of animals that can be practically studied.


Journal of Clinical Investigation | 2013

β-globin gene transfer to human bone marrow for sickle cell disease

Zulema Romero; Fabrizia Urbinati; Sabine Geiger; Aaron R. Cooper; Jennifer Wherley; Michael L. Kaufman; Roger P. Hollis; Rafael Ruiz de Assin; Shantha Senadheera; Arineh Sahagian; Xiangyang Jin; Alyse Gellis; Xiaoyan Wang; David W. Gjertson; Satiro deOliveira; Pamela Kempert; Sally Shupien; Hisham Abdel-Azim; Mark C. Walters; Herbert J. Meiselman; Rosalinda B. Wenby; Theresa Gruber; Victor J. Marder; Thomas D. Coates; Donald B. Kohn

Autologous hematopoietic stem cell gene therapy is an approach to treating sickle cell disease (SCD) patients that may result in lower morbidity than allogeneic transplantation. We examined the potential of a lentiviral vector (LV) (CCL-βAS3-FB) encoding a human hemoglobin (HBB) gene engineered to impede sickle hemoglobin polymerization (HBBAS3) to transduce human BM CD34+ cells from SCD donors and prevent sickling of red blood cells produced by in vitro differentiation. The CCL-βAS3-FB LV transduced BM CD34+ cells from either healthy or SCD donors at similar levels, based on quantitative PCR and colony-forming unit progenitor analysis. Consistent expression of HBBAS3 mRNA and HbAS3 protein compromised a fourth of the total β-globin-like transcripts and hemoglobin (Hb) tetramers. Upon deoxygenation, a lower percentage of HBBAS3-transduced red blood cells exhibited sickling compared with mock-transduced cells from sickle donors. Transduced BM CD34+ cells were transplanted into immunodeficient mice, and the human cells recovered after 2-3 months were cultured for erythroid differentiation, which showed levels of HBBAS3 mRNA similar to those seen in the CD34+ cells that were directly differentiated in vitro. These results demonstrate that the CCL-βAS3-FB LV is capable of efficient transfer and consistent expression of an effective anti-sickling β-globin gene in human SCD BM CD34+ progenitor cells, improving physiologic parameters of the resulting red blood cells.


PLOS ONE | 2009

The 3′ Region of the Chicken Hypersensitive Site-4 Insulator Has Properties Similar to Its Core and Is Required for Full Insulator Activity

Paritha Arumugam; Fabrizia Urbinati; Chinavenmeni S. Velu; Tomoyasu Higashimoto; H. Leighton Grimes; Punam Malik

Chromatin insulators separate active transcriptional domains and block the spread of heterochromatin in the genome. Studies on the chicken hypersensitive site-4 (cHS4) element, a prototypic insulator, have identified CTCF and USF-1/2 motifs in the proximal 250 bp of cHS4, termed the “core”, which provide enhancer blocking activity and reduce position effects. However, the core alone does not insulate viral vectors effectively. The full-length cHS4 has excellent insulating properties, but its large size severely compromises vector titers. We performed a structure-function analysis of cHS4 flanking lentivirus-vectors and analyzed transgene expression in the clonal progeny of hematopoietic stem cells and epigenetic changes in cHS4 and the transgene promoter. We found that the core only reduced the clonal variegation in expression. Unique insulator activity resided in the distal 400 bp cHS4 sequences, which when combined with the core, restored full insulator activity and open chromatin marks over the transgene promoter and the insulator. These data consolidate the known insulating activity of the canonical 5′ core with a novel 3′ 400 bp element with properties similar to the core. Together, they have excellent insulating properties and viral titers. Our data have important implications in understanding the molecular basis of insulator function and design of gene therapy vectors.


Gene Therapy | 2007

The woodchuck hepatitis virus post-transcriptional regulatory element reduces readthrough transcription from retroviral vectors.

Higashimoto T; Fabrizia Urbinati; Perumbeti A; Jiang G; Zarzuela A; Chang Lj; Donald B. Kohn; Punam Malik

The woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) increases transgene expression from a variety of viral vectors, although the precise mechanism is not known. WPRE is most effective when placed downstream of the transgene, proximal to the polyadenylation signal. We hypothesized that WPRE likely reduces viral mRNA readthrough transcription by improving transcript termination, which in turn would increase viral titers and expression. Using a Cre-lox-mediated plasmid-based assay, we found significant readthrough transcription from γ-retroviral vector (RV) long terminal repeat (wt RV-LTR) and RV LTR with a self-inactivating deletion (SIN RV-LTR). WPRE, when placed upstream of the RV LTRs, significantly reduced readthrough transcription. Readthrough, present at much lower levels with the SIN HIV-1 LV-LTR, was also reduced with WPRE. When placed in RV vectors, WPRE increased total RV genomic mRNA; and increased viral titers from transiently transfected 293T cells and stable PG13 producer cells by 7- to 15-fold. The mechanism of increased titers and expression was not due to increased nuclear mRNA export, increased rate of viral transcription or a significant increase in viral mRNA half-life. Our results showed that WPRE improved vector genomic transcript termination to increase titers and expression from RVs.


Molecular Therapy | 2016

CRISPR/Cas9-Mediated Correction of the Sickle Mutation in Human CD34+ cells

Megan D. Hoban; Dianne Lumaquin; Caroline Y. Kuo; Zulema Romero; Joseph Long; Michelle Ho; Courtney S. Young; Michelle Mojadidi; Sorel Fitz-Gibbon; Aaron R. Cooper; Georgia R. Lill; Fabrizia Urbinati; Beatriz Campo-Fernandez; Carmen Flores Bjurström; Matteo Pellegrini; Roger P. Hollis; Donald B. Kohn

Targeted genome editing technology can correct the sickle cell disease mutation of the β-globin gene in hematopoietic stem cells. This correction supports production of red blood cells that synthesize normal hemoglobin proteins. Here, we demonstrate that Transcription Activator-Like Effector Nucleases (TALENs) and the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 nuclease system can target DNA sequences around the sickle-cell mutation in the β-globin gene for site-specific cleavage and facilitate precise correction when a homologous donor template is codelivered. Several pairs of TALENs and multiple CRISPR guide RNAs were evaluated for both on-target and off-target cleavage rates. Delivery of the CRISPR/Cas9 components to CD34+ cells led to over 18% gene modification in vitro. Additionally, we demonstrate the correction of the sickle cell disease mutation in bone marrow derived CD34+ hematopoietic stem and progenitor cells from sickle cell disease patients, leading to the production of wild-type hemoglobin. These results demonstrate correction of the sickle mutation in patient-derived CD34+ cells using CRISPR/Cas9 technology.


Experimental Hematology | 2015

Potentially therapeutic levels of anti-sickling globin gene expression following lentivirus-mediated gene transfer in sickle cell disease bone marrow CD34+ cells

Fabrizia Urbinati; Phillip W. Hargrove; Sabine Geiger; Zulema Romero; Jennifer Wherley; Michael L. Kaufman; Roger P. Hollis; Christopher B. Chambers; Derek A. Persons; Donald B. Kohn; Andrew Wilber

Sickle cell disease (SCD) can be cured by allogeneic hematopoietic stem cell transplant. However, this is only possible when a matched donor is available, making the development of gene therapy using autologous hematopoietic stem cells a highly desirable alternative. We used a culture model of human erythropoiesis to directly compare two insulated, self-inactivating, and erythroid-specific lentiviral vectors, encoding for γ-globin (V5m3-400) or a modified β-globin (βAS3-FB) for production of antisickling hemoglobin (Hb) and correction of red cell deformability after deoxygenation. Bone marrow CD34+ cells from three SCD patients were transduced using V5m3-400 or βAS3-FB and compared with mock-transduced SCD or healthy donor CD34+ cells. Lentiviral transduction did not impair cell growth or differentiation, as gauged by proliferation and acquisition of erythroid markers. Vector copy number averaged approximately one copy per cell, and corrective globin mRNA levels were increased more than sevenfold over mock-transduced controls. Erythroblasts derived from healthy donor and mock-transduced SCD cells produced a low level of fetal Hb that was increased to 23.6 ± 4.1% per vector copy for cells transduced with V5m3-400. Equivalent levels of modified normal adult Hb of 17.6 ± 3.8% per vector copy were detected for SCD cells transduced with βAS3-FB. These levels of antisickling Hb production were sufficient to reduce sickling of terminal-stage red blood cells upon deoxygenation. We concluded that the achieved levels of fetal Hb and modified normal adult Hb would likely prove therapeutic to SCD patients who lack matched donors.

Collaboration


Dive into the Fabrizia Urbinati's collaboration.

Top Co-Authors

Avatar

Donald B. Kohn

University of California

View shared research outputs
Top Co-Authors

Avatar

Punam Malik

Children's Hospital Los Angeles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paritha Arumugam

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Fulvio Mavilio

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomoyasu Higashimoto

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Zulema Romero

University of California

View shared research outputs
Top Co-Authors

Avatar

Ping Xia

Cincinnati Children's Hospital Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge