Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabrizio Araniti is active.

Publication


Featured researches published by Fabrizio Araniti.


Journal of Chemical Ecology | 2013

Citral Induces Auxin and Ethylene-Mediated Malformations and Arrests Cell Division in Arabidopsis thaliana Roots

Elisa Graña; Tamara Sotelo; Carla Díaz-Tielas; Fabrizio Araniti; Urszula Krasuska; Renata Bogatek; M. J. Reigosa; Adela M. Sánchez-Moreiras

Citral is a linear monoterpene which is present, as a volatile component, in the essential oil of several different aromatic plants. Previous studies have demonstrated the ability of citral to alter the mitotic microtubules of plant cells, especially at low concentrations. The changes to the microtubules may be due to the compound acting directly on the treated root and coleoptile cells or to indirect action through certain phytohormones. This study, performed in Arabidopsis thaliana, analysed the short-term effects of citral on the auxin content and mitotic cells, and the long-term effects of these alterations on root development and ethylene levels. The results of this study show that citral alters auxin content and cell division and has a strong long-term disorganising effect on cell ultra-structure in A. thaliana seedlings. Its effects on cell division, the thickening of the cell wall, the reduction in intercellular communication, and the absence of root hairs confirm that citral is a strong phytotoxic compound, which has persistent effects on root development.


Natural Product Research | 2013

Allelopathic potential of Artemisia arborescens: Isolation, identification and quantification of phytotoxic compounds through fractionation-guided bioassays

Fabrizio Araniti; Antonio Lupini; Agostino Sorgonà; Filomena Conforti; Mariangela Marrelli; Giancarlo A. Statti; Francesco Menichini; Maria Rosa Abenavoli

The aerial part of Artemisia arborescens L. (Asteraceae) was extracted with water and methanol, and both extracts were fractionated using n-hexane, chloroform, ethyl acetate and n-butanol. The potential phytotoxicity of both crude extracts and their fractions were assayed in vitro on seed germination and root growth of lettuce (Lactuca sativa L.), a sensitive species largely employed in the allelopathy studies. The inhibitory activities were analysed by dose–response curves and the ED 50 were estimated. Crude extracts strongly inhibited both germination and root growth processes. The fraction-bioassay indicated the following hierarchy of phytotoxicity for both physiological processes: ethyl acetate ≥ n-hexane > chloroform ≥ n-butanol. On the n-hexane fraction, GC–MS analyses were carried out to characterise and quantify some of the potential allelochemicals. Twenty-one compounds were identified and three of them, camphor, trans-caryophyllene and pulegone were quantified.


Plant Biology | 2017

Terpenoid trans-caryophyllene inhibits weed germination and induces plant water status alteration and oxidative damage in adult Arabidopsis

Fabrizio Araniti; Adela M. Sánchez-Moreiras; Elisa Graña; M. J. Reigosa; M. R. Abenavoli

trans-Caryophyllene (TC) is a sesquiterpene commonly found as volatile component in many different aromatic plants. Although the phytotoxic effects of trans-caryophyllene on seedling growth are relatively explored, not many information is available regarding the phytotoxicity of this sesquiterpenes on weed germination and on adult plants. The phytotoxic potential of TC was assayed in vitro on weed germination and seedling growth to validate its phytotoxic potential on weed species. Moreover, it was assayed on the metabolism of Arabidopsis thaliana adult plants, through two different application ways, spraying and watering, in order to establish the primary affected organ and to deal with the unknown mobility of the compound. The results clearly indicated that TC inhibited both seed germination and root growth, as demonstrated by comparison of the ED50 values. Moreover, although trans-caryophyllene-sprayed adult Arabidopsis plants did not show any effect, trans-caryophyllene-watered plants became strongly affected. The results suggested that root uptake was a key step for the effectiveness of this natural compound and its phytotoxicity on adult plants was mainly due to the alteration of plant water status accompanied by oxidative damage.


PLOS ONE | 2016

Loss of Gravitropism in Farnesene-Treated Arabidopsis Is Due to Microtubule Malformations Related to Hormonal and ROS Unbalance

Fabrizio Araniti; Elisa Graña; Urszula Krasuska; Renata Bogatek; M. J. Reigosa; Maria Rosa Abenavoli; Adela M. Sánchez-Moreiras

Mode of action of farnesene, a volatile sesquiterpene commonly found in the essential oils of several plants, was deeply studied on the model species Arabidopsis thaliana. The effects of farnesene on the Arabidopsis root morphology were evaluated by different microscopic techniques. As well, microtubules immunolabeling, phytohormone measurements and ROS staining helped us to elucidate the single or multi-modes of action of this sesquiterpene on plant metabolism. Farnesene-treated roots showed a strong growth inhibition and marked modifications on morphology, important tissue alterations, cellular damages and anisotropic growth. Left-handed growth of farnesene-treated roots, reverted by taxol (a known microtubule stabilizer), was related to microtubule condensation and disorganization. As well, the inhibition of primary root growth, lateral root number, lateral root length, and both root hairs length and density could be explained by the strong increment in ethylene production and auxin content detected in farnesene-treated seedlings. Microtubule alteration and hormonal unbalance appear as important components in the mode of action of farnesene and confirm the strong phytotoxic potential of this sesquiterpene.


Molecules | 2016

Effects of Saponins on Lipid Metabolism: A Review of Potential Health Benefits in the Treatment of Obesity

Mariangela Marrelli; Filomena Conforti; Fabrizio Araniti; Giancarlo A. Statti

Obesity is one of the greatest public health problems. This complex condition has reached epidemic proportions in many parts of the world, and it constitutes a risk factor for several chronic disorders, such as hypertension, cardiovascular diseases and type 2 diabetes. In the last few decades, several studies dealt with the potential effects of natural products as new safe and effective tools for body weight control. Saponins are naturally-occurring surface-active glycosides, mainly produced by plants, whose structure consists of a sugar moiety linked to a hydrophobic aglycone (a steroid or a triterpene). Many pharmacological properties have been reported for these compounds, such as anti-inflammatory, immunostimulant, hypocholesterolemic, hypoglycemic, antifungal and cytotoxic activities. The aim of this review is to provide an overview of recent studies about the anti-obesity therapeutic potential of saponins isolated from medicinal plants. Results on the in vitro and in vivo activity of this class of phytochemicals are here presented and discussed. The most interesting findings about their possible mechanism of action and their potential health benefits in the treatment of obesity are reported, as well.


Natural Product Research | 2013

Individual and joint activity of terpenoids, isolated from Calamintha nepeta extract, on Arabidopsis thaliana

Fabrizio Araniti; Elisa Graña; M. J. Reigosa; Adela M. Sánchez-Moreiras; Maria Rosa Abenavoli

Four terpenoids, camphor, pulegone, trans-caryophyllene and farnesene, previously found in Calamintha nepeta (L.) Savi methanolic extract and essential oils were assayed on germination and root growth of Arabidopsis thaliana (L.) Heynh. None of the terpenes, singularly or in combination, was able to inhibit the germination process. Farnesene and trans-caryophyllene caused a strong inhibitory effect on root growth, and pulegone, at the highest concentrations, reduced lateral root formation. Although the mixture of camphor–trans-caryophyllene with or without farnesene did not cause any effect on root growth, the addition of pulegone induced a marked synergistic activity. Moreover, the addition, at low concentration, of farnesene to pulegone–camphor–trans-caryophyllene mixture further increased the inhibitory effect on root elongation. These results suggested that the inhibitory effects caused by C. nepeta methanolic extract may depend on the combined action of different molecules.


Natural Product Research | 2013

Phytotoxic activity of foliar volatiles and essential oils of Calamintha nepeta (L.) Savi

Fabrizio Araniti; Antonio Lupini; Agostino Sorgonà; Giancarlo A. Statti; Maria Rosa Abenavoli

Foliar volatiles and essential oils of Calamintha nepeta (L.) Savi, a Mediterranean plant species belonging to the Labiatae family, were investigated for their phytotoxic activities on seed germination and root growth of crops (Lactuca sativa L. and Raphanus sativus L.) and weed species (Lolium perenne L. and Amaranthus retroflexus L.). Foliar volatiles of C. nepeta (L.) Savi strongly inhibited both germination and root growth of lettuce, and its essential oils, especially at 125, 250 and 500 μL/L, inhibited both processes in lettuce, radish and A. retroflexus L. species, while displaying a little effect on L. perenne L. By GC–MS, 28 chemicals were identified: 17 monoterpenes, 8 sesquiterpenes, 1 diterpene and 2 miscellaneous. Pulegone was the main constituent of the C. nepeta (L.) Savi essential oils. The terpenic components of essentials oils were probably responsible for the phytotoxic activities.


PLOS ONE | 2017

Allelopatic Potential of Dittrichia viscosa (L.) W. Greuter Mediated by VOCs: A Physiological and Metabolomic Approach

Fabrizio Araniti; Antonio Lupini; Francesco Sunseri; Maria Rosa Abenavoli

Dittrichia viscosa (L.) W. Greuter is a pioneer species belonging to the Compositae family. It is widespread in the Mediterranean basin, where it is considered invasive. It is a source of secondary metabolites, playing an important ecological role. D. viscosa plant extracts showed a phytotoxic activity on several physiological processes of different species. In the current study, the allelopathic potential of D. viscosa VOCs, released by its foliage, was evaluated on seed germination and root growth of lettuce. The VOCs effect was also studied on lettuce adult plants in microcosm systems, which better mimicked the open field conditions. D. viscosa VOCs inhibited both seed germination and root growth of lettuce. The VOCs composition revealed a large presence of terpenoids, responsible of the effects observed. Moreover, D. viscosa VOCs caused an alteration on plant water status accompanied by oxidative damages and photoinhibition on lettuce adult plants.


Molecules | 2015

Phytotoxic Potential and Biological Activity of Three Synthetic Coumarin Derivatives as New Natural-Like Herbicides

Fabrizio Araniti; Raffaella Mancuso; Antonio Lupini; Salvatore V. Giofrè; Francesco Sunseri; Bartolo Gabriele; Maria Rosa Abenavoli

Coumarin is a natural compound well known for its phytotoxic potential. In the search for new herbicidal compounds to manage weeds, three synthetic derivatives bearing the coumarin scaffold (1–3), synthesized by a carbonylative organometallic approach, were in vitro assayed on germination and root growth of two noxious weeds, Amaranthus retroflexus and Echinochloa crus-galli. Moreover, the synthetic coumarins 1–3 were also in vitro assayed on seedlings growth of the model species Arabidopsis thaliana to identify the possible physiological targets. All molecules strongly affected seed germination and root growth of both weeds. Interestingly, the effects of synthetic coumarins on weed germination were higher than template natural coumarin, pointing out ED50 values ranging from 50–115 µM. Moreover, all synthetic coumarins showed a strong phytotoxic potential on both Arabidopsis shoot and root growth, causing a strong reduction in shoot fresh weight (ED50 values ≤ 60 µM), accompanied by leaf development and a decrease in pigment content. Furthermore, they caused a strong alteration in root growth (ED50 values ≤ 170 µM) and morphology with evident alterations in root tip anatomy. Taken together, our results highlight the promising potential herbicidal activity of these compounds.


Journal of Plant Physiology | 2017

Highlighting the effects of coumarin on adult plants of Arabidopsis thaliana (L.) Heynh. by an integrated -omic approach

Fabrizio Araniti; Monica Scognamiglio; Angela Chambery; Rosita Russo; Assunta Esposito; Brigida D’Abrosca; Antonio Fiorentino; Antonio Lupini; Francesco Sunseri; M. R. Abenavoli

In this study, the effects of the allelochemical coumarin through a metabolomic, proteomic and morpho-physiological approach in Arabidopsis adult plants (25days old) were investigated. Metabolomic analysis evidenced an increment of amino acids and a high accumulation of soluble sugars, after 6days of coumarin treatment. This effect was accompanied by a strong decrease on plant fresh and dry weights, as well as on total protein content. On the contrary, coumarin did not affect leaf number but caused a reduction in leaf area. An alteration of water status was confirmed by a reduction of relative water content and an increase in leaf osmotic potential. Moreover, coumarin impaired plant bio-membranes through an increase of lipid peroxidation and H2O2 content suggesting that coumarin treatment might induce oxidative stress. Coumarin reduced the effective quantum yield of the photosystem II, the energy dissipation in the form of heat, the maximum PSII efficiency, the coefficient of the photochemical quenching and the estimated electron transport rate, while it significantly stimulated the fluorescence emission and the coefficient of the non photochemical quenching. Finally, the proteomic characterization of coumarin-treated plants revealed a down-regulation of the ROS detoxifying proteins, responsible of oxidative damage and consequently of physiological cascade effects.

Collaboration


Dive into the Fabrizio Araniti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Lupini

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. R. Abenavoli

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge