Fabrizio Barbanti
Istituto Superiore di Sanità
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fabrizio Barbanti.
Journal of Antimicrobial Chemotherapy | 2011
Patrizia Spigaglia; Fabrizio Barbanti; Paola Mastrantonio
OBJECTIVES Multidrug resistance and antibiotic resistance mechanisms were investigated in 316 Clostridium difficile clinical isolates collected during the first European surveillance on C. difficile in 2005. METHODS MICs of eight different antibiotics were determined using Etest. Reserpine- and carbonyl cyanide m-chlorophenylhydrazone-sensitive efflux was tested using the agar dilution method. Molecular analysis of the resistance mechanisms was performed using PCR assays, PCR mapping and sequencing. RESULTS One hundred and forty-eight C. difficile strains were resistant to at least one antibiotic and 82 (55%) were multidrug resistant. In particular, 48% of these isolates were resistant to erythromycin, clindamycin, moxifloxacin and rifampicin. New genetic elements or determinants conferring resistance to erythromycin/clindamycin or tetracycline were identified. Even if most multiresistant strains carried an erm(B) gene, quite a few were erm(B) negative. In-depth analysis of the underlying mechanism in these isolates was carried out, including analysis of 23S rDNA and the ribosomal proteins L4 and L22. Interestingly, resistance to rifampicin was observed in multidrug-resistant strains in association with resistance to fluoroquinolones. Mutations in the rpo(B) and gyrA genes were identified as the cause of resistance to these antibiotics, respectively. CONCLUSIONS Characterization of multidrug-resistant C. difficile clinical isolates shows that antibiotic resistance is changing, involving new determinants and mechanisms and providing this pathogen with potential advantages over the co-resident gut flora. The present paper provides, for the first time, a comprehensive picture of the different characteristics of multidrug-resistant C. difficile strains in Europe in 2005 and represents an important source of data for future comparative European studies.
Journal of Medical Microbiology | 2008
Patrizia Spigaglia; Fabrizio Barbanti; Paola Mastrantonio; Jon S. Brazier; Frédéric Barbut; Michel Delmée; Ed J. Kuijper; Ian R. Poxton
The European Study Group on Clostridium difficile (ESGCD) conducted a prospective study in 2005 to monitor and characterize C. difficile strains circulating in European hospitals, collecting 411 isolates. Eighty-three of these isolates, showing resistance or intermediate resistance to moxifloxacin (MX), were selected for this study to assess susceptibility to other fluoroquinolones (FQs) and to analyse the gyr genes, encoding the DNA gyrase subunits GyrA and GyrB. Twenty MX-susceptible isolates from the surveillance study were included for comparison. Overall, one amino acid substitution in GyrA (Thr82 to Ile) and four different substitutions in GyrB (Ser416 to Ala, Asp426 to Asn, Asp426 to Val and Arg447 to Lys) were identified. A high level of resistance (MIC >or=32 microg ml(-1)) to MX, ciprofloxacin (CI), gatifloxacin (GA) and levofloxacin (LE) was found in 68 isolates showing the amino acid substitution Thr82 to Ile in GyrA, in eight isolates with the substitutions Thr82 to Ile in GyrA and Ser416 to Ala in GyrB, in two isolates showing the substitution Asp426 to Asn in GyrB and in one isolate with Asp426 to Val in GyrB. The remaining four isolates showed high MICs for CI and LE, but different MIC levels for MX and GA. In particular, intermediate levels of resistance to MX were shown by two isolates, one with the substitution Thr82 to Ile in GyrA, and one showing Asp426 to Asn in GyrB. The substitution Arg447 to Lys in GyrB was found in two strains resistant to MX, CI and LE but susceptible to GA. No substitutions in GyrA were found in the FQ-susceptible strains, whereas two strains showed the amino acid change Ser416 to Ala in GyrB. Thr82 to Ile was the most frequent amino acid change identified in the C. difficile isolates examined. In contrast to previous observations, 10% of the isolates showed this substitution in association with Ser416 to Ala in GyrB. The other amino acid changes found were characteristic of a few strains belonging to certain types and/or countries. Two new substitutions for C. difficile, Ser416 to Ala and Arg447 to Lys, were found in GyrB. Whereas the former does not seem to have a key role in resistance, since it was also detected in susceptible strains, the latter substitution occurred in the same position where other amino acid variations take place in resistant Escherichia coli and other C. difficile strains. A large number of C. difficile isolates now show an alarming pattern of resistance to the majority of FQs currently used in hospitals and outpatient settings, therefore judicious use of these antibiotics and continuous monitoring of in vitro resistance are necessary.
Journal of Clinical Microbiology | 2010
Patrizia Spigaglia; Fabrizio Barbanti; Anna Maria Dionisi; Paola Mastrantonio
ABSTRACT Recent evidence strongly suggests an association between the use of fluoroquinolones and Clostridium difficile infection (CDI). Resistance to fluoroquinolones has been described not only in the hypervirulent strain 027, but also in other important PCR ribotypes circulating in hospital settings. In a European prospective study conducted in 2005, strains resistant to moxifloxacin represented 37.5% of C. difficile clinical isolates. In this study, we investigated a sample of 147 toxigenic C. difficile isolates, collected in Italy from 1985 to 2008, for the presence of mutations in gyr genes that conferred resistance to fluoroquinolones based on a LightCycler assay. Results were confirmed by the determination of MICs for moxifloxacin. Strains resistant to moxifloxacin were also investigated for resistance to three other fluoroquinolones and for a possible association between fluoroquinolone and macrolide-lincosamide-streptogramin B resistance. C. difficile isolates were typed by PCR ribotyping. In total, 50 clinical isolates showed substitutions in gyr genes and were resistant to fluoroquinolones. Ninety-six percent of the C. difficile resistant isolates showed the substitution Thr82-to-Ile in GyrA, as already observed in the majority of resistant strains worldwide. A significant increase of resistance (P < 0.001) was observed in the period 2002 to 2008 (56% resistant) compared to the period 1985 to 2001 (10% resistant). Coresistance with erythromycin and/or clindamycin was found in 96% (48/50) of the isolates analyzed and, interestingly, 84% of resistant strains were erm(B) negative. The majority of the fluoroquinolone-resistant isolates belonged to PCR ribotype 126 or 018. PCR ribotype 126 was the most frequently found from 2002 to 2005, whereas PCR ribotype 018 was predominant in 2007 and 2008 and still represents the majority of strains typed in our laboratory. Overall, the results demonstrate an increasing number of C. difficile strains resistant to fluoroquinolones in Italy and changes in the prevalence and type of C. difficile isolates resistant to fluoroquinolones circulating over time.
Antimicrobial Agents and Chemotherapy | 2005
Patrizia Spigaglia; Valentina Carucci; Fabrizio Barbanti; Paola Mastrantonio
ABSTRACT Erythromycin and tetracycline resistance was analyzed in 37 Clostridium difficile clinical isolates. Strains of different clonal origins showed different erythromycin and tetracycline resistance determinants and different genetic arrangements of the elements. In strains of recent isolation, the presence of Tn916-like elements, never found before in C. difficile clinical isolates, has been demonstrated.
Journal of Medical Microbiology | 2011
Manuela Bianco; Giorgio Fedele; Adriano Quattrini; Patrizia Spigaglia; Fabrizio Barbanti; Paola Mastrantonio; Clara M. Ausiello
Surface-layer proteins (SLPs) have been detected in all Clostridium difficile strains and play a role in adhesion, although an involvement in the inflammatory process may also be supposed, as they cover the bacterial surface and are immunodominant antigens. The aim of this study was to evaluate the immunomodulatory properties of SLPs obtained from hypervirulent and epidemic (H/E) or non-H/E C. difficile strains, to try to determine whether they contribute to hypervirulence. SLPs were purified from H/E PCR ribotype 027 and 001 and non-H/E PCR ribotype 012 C. difficile strains, and the ability to modulate these properties was studied in human ex vivo models of monocytes and monocyte-derived dendritic cells (MDDCs). The results indicated that SLPs were able to induce immunomodulatory cytokines [interleukin (IL)-1β, IL-6 and IL-10] in monocytes. SLPs induced maturation of MDDCs, which acquired enhanced antigen-presenting activity, a crucial function of the mature stage. SLP-primed MDDCs expressed high levels of IL-10, an important regulatory cytokine. No significant differences were found in the activation induced in monocytes and MDDCs by SLP preparations from H/E and non-H/E strains. Overall, these findings show an important role for SLPs in modulation of the immune response to C. difficile. However, SLPs from H/E strains did not show a specific immunomodulatory pattern compared with SLPs from non-H/E strains, suggesting that SLPs are not involved in the increased severity of infection peculiar to H/E strains.
Journal of Antimicrobial Chemotherapy | 2013
Ines Moura; Patrizia Spigaglia; Fabrizio Barbanti; Paola Mastrantonio
OBJECTIVES Susceptibility to metronidazole was investigated in 81 Clostridium difficile strains, belonging to nine different PCR ribotypes, by three different laboratory methods. METHODS MICs for 81 C. difficile clinical isolates were determined by Etest, the agar dilution method (ADM) and the agar incorporation method (AIM). Twenty selected strains were also subjected to subinhibitory concentrations of metronidazole and the MIC heterogeneity was analysed in colonies from each strain that showed increased values before and after exposure to the antibiotic, using ADM and AIM. RESULTS Overall, the MICs obtained by Etest were lower compared with those obtained by ADM and AIM, causing discrepancies in the categorization (as susceptible or having reduced susceptibility) of some strains. Reduced susceptibility to metronidazole was observed using both ADM and AIM, with higher MIC values by AIM in isolates belonging to PCR ribotypes 001 and 010. An increase in MICs after exposure to metronidazole was observed for strains belonging to these PCR ribotypes (by Etest and ADM, but not by AIM). In particular, MICs for colonies from strains belonging to either PCR ribotype 001 or 010 were less heterogeneous by AIM compared with by ADM, suggesting a better ability of AIM to detect strains with reduced susceptibility. CONCLUSIONS These results suggest that the presence of C. difficile subpopulations with reduced susceptibility to metronidazole in the human intestine may be one of the factors responsible for reduced antibiotic efficacy in vivo. The possibility that higher MICs may have often gone unnoticed underlines the importance of choosing the best method for MIC determination and the necessity to monitor C. difficile susceptibility to metronidazole.
Antimicrobial Agents and Chemotherapy | 2009
Patrizia Spigaglia; Fabrizio Barbanti; Thomas J. Louie; Frédéric Barbut; Paola Mastrantonio
ABSTRACT Recent studies have suggested that exposure to fluoroquinolones represents a risk factor for the development of Clostridium difficile infections and that the acquisition of resistance to the newer fluoroquinolones is the major reason facilitating wide dissemination. In particular, moxifloxacin (MX) and levofloxacin (LE) have been recently associated with outbreaks caused by the C. difficile toxinotype III/PCR ribotype 027/pulsed-field gel electrophoresis type NAP1 strain. In this study, we evaluated the potential of MX and LE in the in vitro development of fluoroquinolone resistance mediated by GyrA and GyrB alterations. Resistant mutants were obtained from five C. difficile parent strains, susceptible to MX, LE, and gatifloxacin (GA) and belonging to different toxinotypes, by selection in the presence of increasing concentrations of MX and LE. Stable mutants showing substitutions in GyrA and/or GyrB were obtained from the parent strains after selection by both antibiotics. Mutants had MICs ranging from 8 to 128 μg/ml for MX, from 8 to 256 μg/ml for LE, and from 1.5 to ≥32 μg/ml for GA. The frequency of mutation ranged from 3.8 × 10−6 to 6.6 × 10−5 for MX and from 1.0 × 10−6 to 2.4 × 10−5 for LE. In total, six different substitutions in GyrA and five in GyrB were observed in this study. The majority of these substitutions has already been described for clinical isolates or has occurred at positions known to be involved in fluoroquinolone resistance. In particular, the substitution Thr82 to Ile in GyrA, the most common found in resistant C. difficile clinical isolates, was observed after selection with LE, whereas the substitution Asp426 to Val in GyrB, recently described in toxin A-negative/toxin B-positive epidemic strains, was observed after selection with MX. Interestingly, a reduced susceptibility to fluoroquinolones was observed in colonies isolated after the first and second steps of selection by both MX and LE, with no substitution in GyrA or GyrB. The results suggest a relevant role of fluoroquinolones in the emergence and selection of fluoroquinolone-resistant C. difficile strains also in vivo.
Antimicrobial Agents and Chemotherapy | 2008
Patrizia Spigaglia; Fabrizio Barbanti; Paola Mastrantonio
ABSTRACT In this study, the tet(W) gene region of a human clinical isolate of Clostridium difficile resistant to tetracycline was characterized. This gene was a new allele showing 99% sequence identity to the gene found in the human strain Bifidobacterium longum F8, and it is not transferable by “in vitro” mating experiments.
Journal of Clinical Microbiology | 2011
Mark A. Miller; Ruth Blanchette; Patrizia Spigaglia; Fabrizio Barbanti; Paola Mastrantonio
ABSTRACT We tested the activities of rifampin (RIF) and rifaximin (RFX) against 180 Clostridium difficile clinical isolates selected from Canadian and Italian culture collections. MICs were determined by CLSI agar dilution for both drugs and by Etest for RIF. Sixteen of 85 Italian isolates (18.8%) showed high-level resistance to both rifamycins (MICs, >16 μg/ml), compared to 2 of 95 (2.1%) Canadian isolates. Two new rpoB mutations were identified in rifamycin-resistant isolates. RIF susceptibility by Etest correlated completely with susceptibility to both rifamycins determined by agar dilution.
Journal of Medical Microbiology | 2011
Patrizia Spigaglia; Cesira Galeotti; Fabrizio Barbanti; Maria Scarselli; Johan Van Broeck; Paola Mastrantonio
The aim of this study was to investigate the S-layer proteins (SLPs) of the hypervirulent Clostridium difficile PCR ribotype 027 and compare them with those of PCR ribotype 001 and other PCR ribotypes involved in C. difficile infection and outbreaks, by molecular analysis and immunological assays. It has been demonstrated previously that PCR ribotype 027 SlpA is conserved in C. difficile strains belonging to this PCR ribotype and that it is a new variant, showing 88 % identity with SlpA of PCR ribotype 001. As the low-molecular-weight (LMW) SLPs of C. difficile are immunodominant antigens, attention was focused on this region of the genome. Sequencing of strains of different PCR ribotypes (001, 012, 014, 017, 027 and 078) showed that SlpA was conserved among strains belonging to the same PCR ribotype. Comparison of the LMW SLP region among these strains identified ten regions with sequence identity between PCR ribotypes 027 and 001, and low conservation with the other PCR ribotypes. In particular, two of these regions corresponded to areas predicted to be surface exposed. Three specific peptides, including those of the two surface-exposed regions, were recognized by human sera against PCR ribotypes 027 and 001 and by a rabbit polyclonal serum against the SLPs of PCR ribotype 027. In contrast, these peptides were not recognized by a polyclonal serum against the SLPs of PCR ribotype 012 used as a control. These results confirm the antigenic role of the LMW SLP and suggest that it may have a role in evasion of the host immune response.