Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabrizio Galimberti is active.

Publication


Featured researches published by Fabrizio Galimberti.


Clinical Cancer Research | 2009

Uncovering Growth-Suppressive MicroRNAs in Lung Cancer

Xiaoying Liu; Lorenzo F. Sempere; Fabrizio Galimberti; Sarah J. Freemantle; Candice C. Black; Konstantin H. Dragnev; M. Yan; Steven Fiering; Vincent A. Memoli; Hua Li; James DiRenzo; Murray Korc; Charles N. Cole; M. Bak; Sakari Kauppinen; Ethan Dmitrovsky

Purpose: MicroRNA (miRNA) expression profiles improve classification, diagnosis, and prognostic information of malignancies, including lung cancer. This study uncovered unique growth-suppressive miRNAs in lung cancer. Experimental Design: miRNA arrays were done on normal lung tissues and adenocarcinomas from wild-type and proteasome degradation-resistant cyclin E transgenic mice to reveal repressed miRNAs in lung cancer. Real-time and semiquantitative reverse transcription-PCR as well as in situ hybridization assays validated these findings. Lung cancer cell lines were derived from each transgenic line (designated as ED-1 and ED-2 cells, respectively). Each highlighted miRNA was independently transfected into these cells. Growth-suppressive mechanisms were explored. Expression of a computationally predicted miRNA target was examined. These miRNAs were studied in a paired normal-malignant human lung tissue bank. Results: miR-34c, miR-145, and miR-142-5p were repressed in transgenic lung cancers. Findings were confirmed by real-time and semiquantitative reverse transcription-PCR as well as in situ hybridization assays. Similar miRNA profiles occurred in human normal versus malignant lung tissues. Individual overexpression of miR-34c, miR-145, and miR-142-5p in ED-1 and ED-2 cells markedly repressed cell growth. Anti-miR cotransfections antagonized this inhibition. The miR-34c target, cyclin E, was repressed by miR-34c transfection and provided a mechanism for observed growth suppression. Conclusions: miR-34c, miR-145, and miR-142-5p were repressed in murine and human lung cancers. Transfection of each miRNA significantly repressed lung cancer cell growth. Thus, these miRNAs were growth suppressive and are proposed to exert antineoplastic effects in the lung.


Clinical Cancer Research | 2010

Targeting the Cyclin E-Cdk-2 Complex Represses Lung Cancer Growth by Triggering Anaphase Catastrophe

Fabrizio Galimberti; Sarah L. Thompson; Xi Liu; Hua Li; Vincent A. Memoli; Simon Green; James DiRenzo; Patricia Greninger; Sreenath V. Sharma; Jeffrey Settleman; Duane A. Compton; Ethan Dmitrovsky

Purpose: Cyclin-dependent kinases (Cdk) and their associated cyclins are targets for lung cancer therapy and chemoprevention given their frequent deregulation in lung carcinogenesis. This study uncovered previously unrecognized consequences of targeting the cyclin E–Cdk-2 complex in lung cancer. Experimental Design: Cyclin E, Cdk-1, and Cdk-2 were individually targeted for repression with siRNAs in lung cancer cell lines. Cdk-2 was also pharmacologically inhibited with the reversible kinase inhibitor seliciclib. Potential reversibility of seliciclib effects was assessed in washout experiments. Findings were extended to a large panel of cancer cell lines using a robotic-based platform. Consequences of cyclin E–Cdk-2 inhibition on chromosome stability and on in vivo tumorigenicity were explored as were effects of combining seliciclib with different taxanes in lung cancer cell lines. Results: Targeting the cyclin E–Cdk-2 complex, but not Cdk-1, resulted in marked growth inhibition through the induction of multipolar anaphases triggering apoptosis. Treatment with the Cdk-2 kinase inhibitor seliciclib reduced lung cancer formation in a murine syngeneic lung cancer model and decreased immunohistochemical detection of the proliferation markers Ki-67 and cyclin D1 in lung dysplasia spontaneously arising in a transgenic cyclin E–driven mouse model. Combining seliciclib with a taxane resulted in augmented growth inhibition and apoptosis in lung cancer cells. Pharmacogenomic analysis revealed that lung cancer cell lines with mutant ras were especially sensitive to seliciclib. Conclusions: Induction of multipolar anaphases leading to anaphase catastrophe is a previously unrecognized mechanism engaged by targeting the cyclin E–Cdk-2 complex. This exerts substantial antineoplastic effects in the lung. Clin Cancer Res; 16(1); 109–20


Molecular Cancer Therapeutics | 2008

UBE1L causes lung cancer growth suppression by targeting cyclin D1

Qing Feng; David Sekula; Yongli Guo; Xi Liu; Candice C. Black; Fabrizio Galimberti; Sumit J. Shah; Lorenzo F. Sempere; Vincent A. Memoli; Jesper B. Andersen; Bret A. Hassel; Konstantin H. Dragnev; Ethan Dmitrovsky

UBE1L is the E1-like ubiquitin-activating enzyme for the IFN-stimulated gene, 15-kDa protein (ISG15). The UBE1L-ISG15 pathway was proposed previously to target lung carcinogenesis by inhibiting cyclin D1 expression. This study extends prior work by reporting that UBE1L promotes a complex between ISG15 and cyclin D1 and inhibited cyclin D1 but not other G1 cyclins. Transfection of the UBE1L-ISG15 deconjugase, ubiquitin-specific protein 18 (UBP43), antagonized UBE1L-dependent inhibition of cyclin D1 and ISG15-cyclin D1 conjugation. A lysine-less cyclin D1 species was resistant to these effects. UBE1L transfection reduced cyclin D1 protein but not mRNA expression. Cycloheximide treatment augmented this cyclin D1 protein instability. UBE1L knockdown increased cyclin D1 protein. UBE1L was independently retrovirally transduced into human bronchial epithelial and lung cancer cells. This reduced cyclin D1 expression and clonal cell growth. Treatment with the retinoid X receptor agonist bexarotene induced UBE1L and reduced cyclin D1 immunoblot expression. A proof-of-principle bexarotene clinical trial was independently examined for UBE1L, ISG15, cyclin D1, and Ki-67 immunohistochemical expression profiles in pretreatment versus post-treatment tumor biopsies. Increased UBE1L with reduced cyclin D1 and Ki-67 expression occurred in human lung cancer when a therapeutic bexarotene intratumoral level was achieved. Thus, a mechanism for UBE1L-mediated growth suppression was found by UBE1L-ISG15 preferentially inhibiting cyclin D1. Molecular therapeutic implications are discussed. [Mol Cancer Ther 2008;7(12):3780–8]


Cancer Prevention Research | 2011

Bexarotene Plus Erlotinib Suppress Lung Carcinogenesis Independent of KRAS Mutations in Two Clinical Trials and Transgenic Models

Konstantin H. Dragnev; Tian Ma; Jobin Cyrus; Fabrizio Galimberti; Vincent A. Memoli; Alexander M. Busch; Gregory J. Tsongalis; Marc Seltzer; David Johnstone; Cherie P. Erkmen; William C. Nugent; James R. Rigas; Xi Liu; Sarah J. Freemantle; Jonathan M. Kurie; Samuel Waxman; Ethan Dmitrovsky

The rexinoid bexarotene represses cyclin D1 by causing its proteasomal degradation. The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) erlotinib represses cyclin D1 via different mechanisms. We conducted a preclinical study and 2 clinical/translational trials (a window-of-opportunity and phase II) of bexarotene plus erlotinib. The combination repressed growth and cyclin D1 expression in cyclin-E- and KRAS/p53-driven transgenic lung cancer cells. The window-of-opportunity trial in early-stage non–small-cell lung cancer (NSCLC) patients (10 evaluable), including cases with KRAS mutations, repressed cyclin D1 (in tumor biopsies and buccal swabs) and induced necrosis and inflammatory responses. The phase II trial in heavily pretreated, advanced NSCLC patients (40 evaluable; a median of two prior relapses per patient (range, 0–5); 21% with prior EGFR-inhibitor therapy) produced three major clinical responses in patients with prolonged progression-free survival (583-, 665-, and 1,460-plus days). Median overall survival was 22 weeks. Hypertriglyceridemia was associated with an increased median overall survival (P = 0.001). Early PET (positron emission tomographic) response did not reliably predict clinical response. The combination was generally well tolerated, with toxicities similar to those of the single agents. In conclusion, bexarotene plus erlotinib was active in KRAS-driven lung cancer cells, was biologically active in early-stage mutant KRAS NSCLC, and was clinically active in advanced, chemotherapy-refractory mutant KRAS tumors in this study and previous trials. Additional lung cancer therapy or prevention trials with this oral regimen are warranted. Cancer Prev Res; 4(6); 818–28. ©2011 AACR.


Journal of Cellular Biochemistry | 2007

Cyclin degradation for cancer therapy and chemoprevention

Sarah J. Freemantle; Xi Liu; Qing Feng; Fabrizio Galimberti; Steven Blumen; David Sekula; Sutisak Kitareewan; Konstantin H. Dragnev; Ethan Dmitrovsky

Cancer is characterized by uncontrolled cell division resulting from multiple mutagenic events. Cancer chemoprevention strategies aim to inhibit or reverse these events using natural or synthetic pharmacologic agents. Ideally, this restores normal growth control mechanisms. Diverse classes of compounds have been identified with chemopreventive activity. What unites many of them is an ability to inhibit the cell cycle by specifically modulating key components. This delays division long enough for cells to respond to mutagenic damage. In some cases, damage is repaired and in others cellular damage is sufficient to trigger apoptosis. It is now known that pathways responsible for targeting G1 cyclins for proteasomal degradation can be engaged pharmacologically. Emergence of induced cyclin degradation as a target for cancer therapy and chemoprevention in pre‐clinical models is discussed in this article. Evidence for cyclin D1 as a molecular pharmacologic target and biological marker for clinical response is based on experience of proof of principle trials. J. Cell. Biochem. 102: 869–877, 2007.


Clinical Cancer Research | 2011

Anaphase Catastrophe Is a Target for Cancer Therapy

Fabrizio Galimberti; Sarah L. Thompson; Saranya Ravi; Duane A. Compton; Ethan Dmitrovsky

Neoplastic cells are genetically unstable. Strategies that target pathways affecting genome instability can be exploited to disrupt tumor cell growth, potentially with limited consequences to normal cells. Chromosomal instability (CIN) is one type of genome instability characterized by mitotic defects that increase the rate of chromosome mis-segregation. CIN is frequently caused by extra centrosomes that transiently disrupt normal bipolar spindle geometry needed for accurate chromosome segregation. Tumor cells survive with extra centrosomes because of biochemical pathways that cluster centrosomes and promote chromosome segregation on bipolar spindles. Recent work shows that targeted inhibition of these pathways prevents centrosome clustering and forces chromosomes to segregate to multiple daughter cells, an event triggering apoptosis that we refer to as anaphase catastrophe. Anaphase catastrophe specifically kills tumor cells with more than 2 centrosomes. This death program can occur after genetic or pharmacologic inhibition of cyclin dependent kinase 2 (Cdk2) and is augmented by combined treatment with a microtubule inhibitor. This proapoptotic effect occurs despite the presence of ras mutations in cancer cells. Anaphase catastrophe is a previously unrecognized mechanism that can be pharmacologically induced for apoptotic death of cancer cells and is, therefore, appealing to engage for cancer therapy and prevention. Clin Cancer Res; 17(6); 1218–22. ©2011 AACR.


Cancer Research | 2010

Blockade of the Ubiquitin Protease UBP43 Destabilizes Transcription Factor PML/RARα and Inhibits the Growth of Acute Promyelocytic Leukemia

Yongli Guo; Andrey V. Dolinko; Fadzai Chinyengetere; Bruce A. Stanton; Jennifer M. Bomberger; Eugene Demidenko; Da Cheng Zhou; Robert E. Gallagher; Tian Ma; Fabrizio Galimberti; Xi Liu; David Sekula; Sarah J. Freemantle; Ethan Dmitrovsky

More effective treatments for acute promyelocytic leukemia (APL) are needed. APL cell treatment with all-trans-retinoic acid (RA) degrades the chimeric, dominant-negative-acting transcription factor promyelocytic leukemia gene (PML)/RARα, which is generated in APL by chromosomal translocation. The E1-like ubiquitin-activating enzyme (UBE1L) associates with interferon-stimulated gene ISG15 that binds and represses PML/RARα protein. Ubiquitin protease UBP43/USP18 removes ISG15 from conjugated proteins. In this study, we explored how RA regulates UBP43 expression and the effects of UBP43 on PML/RARα stability and APL growth, apoptosis, or differentiation. RA treatment induced UBE1L, ISG15, and UBP43 expression in RA-sensitive but not RA-resistant APL cells. Similar in vivo findings were obtained in a transgenic mouse model of transplantable APL, and in the RA response of leukemic cells harvested directly from APL patients. UBP43 knockdown repressed PML/RARα protein levels and inhibited RA-sensitive or RA-resistant cell growth by destabilizing the PML domain of PML/RARα. This inhibitory effect promoted apoptosis but did not affect the RA differentiation response in these APL cells. In contrast, elevation of UBP43 expression stabilized PML/RARα protein and inhibited apoptosis. Taken together, our findings define the ubiquitin protease UBP43 as a novel candidate drug target for APL treatment.


Oncogene | 2013

The Hedgehog processing pathway is required for NSCLC growth and survival

Jezabel Rodriguez-Blanco; N. S. Schilling; Robert Tokhunts; Camilla Giambelli; Jun Long; D. Liang Fei; Samer Singh; K. E. Black; Zhiqiang Wang; Fabrizio Galimberti; Pablo A. Bejarano; S. Elliot; M. K. Glassberg; Dao M. Nguyen; William W. Lockwood; Wan L. Lam; Ethan Dmitrovsky; Anthony J. Capobianco; David J. Robbins

Considerable interest has been generated from the results of recent clinical trials using smoothened (SMO) antagonists to inhibit the growth of hedgehog (HH) signaling-dependent tumors. This interest is tempered by the discovery of SMO mutations mediating resistance, underscoring the rationale for developing therapeutic strategies that interrupt HH signaling at levels distinct from those inhibiting SMO function. Here, we demonstrate that HH-dependent non-small cell lung carcinoma (NSCLC) growth is sensitive to blockade of the HH pathway upstream of SMO, at the level of HH ligand processing. Individually, the use of different lentivirally delivered shRNA constructs targeting two functionally distinct HH-processing proteins, skinny hedgehog (SKN) or dispatched-1 (DISP-1), in NSCLC cell lines produced similar decreases in cell proliferation and increased cell death. Further, providing either an exogenous source of processed HH or a SMO agonist reverses these effects. The attenuation of HH processing, by knocking down either of these gene products, also abrogated tumor growth in mouse xenografts. Finally, we extended these findings to primary clinical specimens, showing that SKN is frequently overexpressed in NSCLC and that higher DISP-1 expression is associated with an unfavorable clinical outcome. Our results show a critical role for HH processing in HH-dependent tumors, identifies two potential druggable targets in the HH pathway, and suggest that similar therapeutic strategies could be explored to treat patients harboring HH ligand-dependent cancers.


Molecular Cancer Therapeutics | 2012

Evidence for the Ubiquitin Protease UBP43 as an Antineoplastic Target

Yongli Guo; Fadzai Chinyengetere; Andrey V. Dolinko; Alexandra Lopez-Aguiar; Yun Lu; Fabrizio Galimberti; Tian Ma; Qing Feng; David Sekula; Sarah J. Freemantle; Angeline S. Andrew; Vincent A. Memoli; Ethan Dmitrovsky

New pharmacologic targets are needed for lung cancer. One candidate pathway to target is composed of the E1-like ubiquitin-activating enzyme (UBE1L) that associates with interferon-stimulated gene 15 (ISG15), which complexes with and destabilizes cyclin D1. Ubiquitin protease 43 (UBP43/USP18) removes ISG15 from conjugated proteins. This study reports that gain of UBP43 stabilized cyclin D1, but not other D-type cyclins or cyclin E. This depended on UBP43 enzymatic activity; an enzymatically inactive UBP43 did not affect cyclin D1 stability. As expected, small interfering RNAs that reduced UBP43 expression also decreased cyclin D1 levels and increased apoptosis in a panel of lung cancer cell lines. Forced cyclin D1 expression rescued UBP43 apoptotic effects, which highlighted the importance of cyclin D1 in conferring this. Short hairpin RNA-mediated reduction of UBP43 significantly increased apoptosis and reduced murine lung cancer growth in vitro and in vivo after transplantation of these cells into syngeneic mice. These cells also exhibited increased response to all-trans-retinoic acid, interferon, or cisplatin treatments. Notably, gain of UBP43 expression antagonized these effects. Normal-malignant human lung tissue arrays were examined independently for UBP43, cyclin D1, and cyclin E immunohistochemical expression. UBP43 was significantly (P < 0.01) increased in the malignant versus normal lung. A direct relationship was found between UBP43 and cyclin D1 (but not cyclin E) expression. Differential UBP43 expression was independently detected in a normal-malignant tissue array with diverse human cancers. Taken together, these findings uncovered UBP43 as a previously unrecognized antineoplastic target. Mol Cancer Ther; 11(9); 1968–77. ©2012 AACR.


Cancer Research | 2015

CDK2 Inhibition Causes Anaphase Catastrophe in Lung Cancer through the Centrosomal Protein CP110

Shanhu Hu; Alexey V. Danilov; Kristina M. Godek; Bernardo Orr; Laura J. Tafe; Jaime Rodriguez-Canales; Carmen Behrens; Barbara Mino; Cesar A. Moran; Vincent A. Memoli; Lisa Maria Mustachio; Fabrizio Galimberti; Saranya Ravi; Andrew De Castro; Yun Lu; David Sekula; Angeline S. Andrew; Ignacio I. Wistuba; Sarah J. Freemantle; Duane A. Compton; Ethan Dmitrovsky

Aneuploidy is frequently detected in human cancers and is implicated in carcinogenesis. Pharmacologic targeting of aneuploidy is an attractive therapeutic strategy, as this would preferentially eliminate malignant over normal cells. We previously discovered that CDK2 inhibition causes lung cancer cells with more than two centrosomes to undergo multipolar cell division leading to apoptosis, defined as anaphase catastrophe. Cells with activating KRAS mutations were especially sensitive to CDK2 inhibition. Mechanisms of CDK2-mediated anaphase catastrophe and how activated KRAS enhances this effect were investigated. Live-cell imaging provided direct evidence that following CDK2 inhibition, lung cancer cells develop multipolar anaphase and undergo multipolar cell division with the resulting progeny apoptotic. The siRNA-mediated repression of the CDK2 target and centrosome protein CP110 induced anaphase catastrophe of lung cancer cells. In contrast, CP110 overexpression antagonized CDK2 inhibitor-mediated anaphase catastrophe. Furthermore, activated KRAS mutations sensitized lung cancer cells to CDK2 inhibition by deregulating CP110 expression. Thus, CP110 is a critical mediator of CDK2 inhibition-driven anaphase catastrophe. Independent examination of murine and human paired normal-malignant lung tissues revealed marked upregulation of CP110 in malignant versus normal lung. Human lung cancers with KRAS mutations had significantly lower CP110 expression as compared with KRAS wild-type cancers. Thus, a direct link was found between CP110 and CDK2 inhibitor antineoplastic response. CP110 plays a mechanistic role in response of lung cancer cells to CDK2 inhibition, especially in the presence of activated KRAS mutations.

Collaboration


Dive into the Fabrizio Galimberti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xi Liu

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge