Fabrizio Manetti
University of Siena
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fabrizio Manetti.
Antimicrobial Agents and Chemotherapy | 2012
Valentina La Rosa; Giovanna Poce; Julio Ortiz Canseco; Silvia Buroni; Maria Rosalia Pasca; Mariangela Biava; Ravikiran M. Raju; Salvatore Alfonso; Claudio Battilocchio; Babak Javid; Flavia Sorrentino; Thomas R. Ioerger; James C. Sacchettini; Fabrizio Manetti; Maurizio Botta; Alessandro De Logu; Eric J. Rubin; Edda De Rossi
ABSTRACT The 1,5-diarylpyrrole derivative BM212 was previously shown to be active against multidrug-resistant clinical isolates and Mycobacterium tuberculosis residing within macrophages as well as against Mycobacterium avium and other atypical mycobacteria. To determine its mechanism of action, we identified the cellular target. Spontaneous Mycobacterium smegmatis, Mycobacterium bovis BCG, and M. tuberculosis H37Rv mutants that were resistant to BM212 were isolated. By the screening of genomic libraries and by whole-genome sequencing, we found that all the characterized mutants showed mutations in the mmpL3 gene, allowing us to conclude that resistance to BM212 maps to the MmpL3 protein, a member of the MmpL (mycobacterial membrane protein, large) family. Susceptibility was unaffected by the efflux pump inhibitors reserpine, carbonylcyanide m-chlorophenylhydrazone, and verapamil. Uptake/efflux experiments with [14C]BM212 demonstrated that resistance is not driven by the efflux of BM212. Together, these data strongly suggest that the MmpL3 protein is the cellular target of BM212.
Bioorganic & Medicinal Chemistry | 2009
Daniele Castagnolo; Fabrizio Manetti; Marco Radi; Beatrice Bechi; Mafalda Pagano; Alessandro De Logu; Rita Meleddu; M Saddi; Maurizio Botta
Two series of novel rigid pyrazolone derivatives were synthesized and evaluated as inhibitors of Mycobacterium tuberculosis (MTB), the causative agent of tuberculosis. Two of these compounds showed a high activity against MTB (MIC=4 microg/mL). The newly synthesized pyrazolones were also computationally investigated to analyze if their properties fit the pharmacophoric model for antitubercular compounds previously built by us. The results are in agreement with those reported by us previously for a class of pyrazole analogues and confirm the fundamental role of the p-chlorophenyl moiety at C4 in the antimycobacterial activity.
Bioorganic & Medicinal Chemistry | 2008
Daniele Castagnolo; Alessandro De Logu; Marco Radi; Beatrice Bechi; Fabrizio Manetti; Matteo Magnani; Sibilla Supino; Rita Meleddu; L Chisu; Maurizio Botta
As a continuation of our previous work that turned toward the identification of antimycobacterial compounds with innovative structures, two series of pyrazole derivatives were synthesized by parallel solution-phase synthesis and were assayed as inhibitors of Mycobacterium tuberculosis (MTB), which is the causative agent of tuberculosis. One of these compounds showed high activity against MTB (MIC = 4 microg/mL). The newly synthesized pyrazoles were also computationally investigated to analyze their fit properties to the pharmacophoric model for antitubercular compounds previously built by us and to refine structure-activity relationship analysis.
Current Pharmaceutical Design | 2000
Fabrizio Manetti; Federico Corelli; Maurizio Botta
Fibroblast growth factors (FGFs) are members of a family of polypeptides synthesized by a variety of cell types during the processes of embryonic development and in adult tissues. FGFs have been detected in normal and malignant cells and show a biological profile that includes mitogenic and angiogenic activity with a consequent crucial role in cell differentiation and development. To activate signal transduction pathways, FGFs use a dual receptor system based on tyrosine kinases and heparan sulfate (HS) proteoglycans. Based on these considerations, a variety of inhibitors able to block the interactions between FGFs and their receptors have been designed and investigated for their biological properties related to antiangiogenesis and antitumor activity. In this paper, in addition to an extensive description of the FGF family members, we report several compounds acting as FGF inhibitors by direct interaction with the growth factors. Suramin and other diverse polyanionic polysulfated and polysulfonated compounds are described, with a particular focus on suradistas. For this class of molecules, by means of molecular modeling procedures, a binding model to FGF-2 has been proposed and the structure-activity relationships of suradistas have been analyzed on the basis of the computational model described.
Journal of Medicinal Chemistry | 2008
Fabrizio Manetti; Chiara Brullo; Matteo Magnani; Francesca Mosci; Beatrice Chelli; Emmanuele Crespan; Silvia Schenone; Antonella Naldini; Olga Bruno; Maria Letizia Trincavelli; Giovanni Maga; Fabio Carraro; Claudia Martini; Francesco Bondavalli; Maurizio Botta
Results from molecular docking calculations and Grid mapping laid the foundations for a structure-based optimization approach to improve the biological properties of pyrazolo-pyrimidine derivatives in terms of inhibition of Abl enzymatic activity and antiproliferative properties toward human leukemia cells. Insertion of halogen substituents with various substitution patterns, suggested by simulations, led to a significant improvement of leukemia cell growth inhibition and to an increase up to 1 order of magnitude of the affinity toward Abl.
European Journal of Medicinal Chemistry | 2009
Mariangela Biava; Giovanna Poce; Alessandro De Logu; Rita Meleddu; Edda De Rossi; Fabrizio Manetti; Maurizio Botta
During the search of novel antitubercular drugs related to BM 212, new diarylpyrroles were designed and synthesized on the basis of a structure-activity relationship analysis of many pyrroles previously described by us. Among them, 1-(4-fluorophenyl)-2-ethyl-3-(thiomorpholin-4-yl)methyl-5-(4-methylphenyl)-1H-pyrrole (2b) proved to be particularly active, with a minimum inhibitory concentration (MIC, expressed as microg/mL) and a protection index (PI) better than or comparable to those of reference compounds. Also the remaining compounds were very active, although their MIC and PI were in general lower than those of their parent 2-methyl analogues.
Journal of Medicinal Chemistry | 2008
Giovanni Maga; Federico Falchi; Anna Garbelli; Amalia Belfiore; Myriam Witvrouw; Fabrizio Manetti; Maurizio Botta
HIV-1 replication has been inhibited by using a compound able to target the human cellular cofactor DEAD-box ATPase DDX3, essential for HIV-1 RNA nuclear export. This compound, identified by means of a computational protocol based on pharmacophoric modeling and molecular docking calculations, represents the first small molecule with such a mechanism of action and could lay the foundations for a pioneering approach for the treatment of HIV-1 infections.
Bioorganic & Medicinal Chemistry | 2003
Mariangela Biava; Delia Deidda; Raffaello Pompei; Andrea Tafi; Fabrizio Manetti
During the course of our investigations in the field of azole antimicrobial agents, we have identified BM 212, a pyrrole derivative with good in vitro activity against mycobacteria and candidae. These findings prompted us to prepare new pyrrole derivatives 1-10 in the hope of increasing the activity. The microbiological data showed interesting in vitro activity against Mycobacterium tuberculosis and atypical mycobacteria.
Journal of Medicinal Chemistry | 2012
Antonio Solinas; Hélène Faure; Hermine Roudaut; Elisabeth Traiffort; Angèle Schoenfelder; André Mann; Fabrizio Manetti; Maurizio Taddei; Martial Ruat
The Smoothened (Smo) receptor is the major transducer of the Hedgehog (Hh) signaling pathway. On the basis of the structure of the acylthiourea Smo antagonist (MRT-10), a number of different series of analogous compounds were prepared by ligand-based structural optimization. The acylthioureas, originally identified as actives, were converted into the corresponding acylureas or acylguanidines. In each series, similar structural trends delivered potent compounds with IC(50) values in the nanomolar range with respect to the inhibition of the Hh signaling pathway in various cell-based assays and of BODIPY-cyclopamine binding to human Smo. The similarity of their biological activities, in spite of discrete structural differences, may reveal the existence of hydrogen-bonding interactions between the ligands and the receptor pocket. Biological potency of compounds 61, 72, and 86 (MRT-83) were comparable to those of the clinical candidate GDC-0449. These findings suggest that these original molecules will help delineate Smo and Hh functions and can be developed as potential anticancer agents.
European Journal of Medicinal Chemistry | 2008
Silvia Schenone; Chiara Brullo; Olga Bruno; Francesco Bondavalli; Luisa Mosti; Giovanni Maga; Emmanuele Crespan; Fabio Carraro; Fabrizio Manetti; Cristina Tintori; Maurizio Botta
The synthesis of new 4-amino substituted pyrazolo[3,4-d]pyrimidines along with their activity in cell-free enzymatic assays on Src and Abl tyrosine kinases is reported. Some compounds emerged as good dual inhibitors of the two enzymes, showed antiproliferative effects on two Bcr-Abl positive leukemia cell lines K-562 and KU-812, and induced apoptosis, as demonstrated by the PARP assay. Docking studies have been also performed to analyze the binding mode of compounds under study and to identify the structural determinants of their interaction with both Src and Abl.