Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabrizio Rinaldi is active.

Publication


Featured researches published by Fabrizio Rinaldi.


Journal of Translational Medicine | 2010

Overexpression of microRNA-206 in the skeletal muscle from myotonic dystrophy type 1 patients.

Stefano Gambardella; Fabrizio Rinaldi; Saverio M Lepore; Antonella Viola; Emanuele Loro; Corrado Angelini; Lodovica Vergani; Giuseppe Novelli; Annalisa Botta

BackgroundMicroRNAs are highly conserved, noncoding RNAs involved in post-transcriptional gene silencing. They have been shown to participate in a wide range of biological processes, including myogenesis and muscle regeneration. The goal of this study is to test the hypothesis that myo-miRs (myo = muscle + miR = miRNA) expression is altered in muscle from patients affected by myotonic dystrophy type 1 (DM1), the most frequently inherited neuromuscular disease in adults. In order to gain better insights about the role of miRNAs in the DM1 pathogenesis, we have also analyzed the muscular expression of miR-103 and miR-107, which have been identified in silico as attractive candidates for binding to the DMPK mRNA.MethodsTo this aim, we have profiled the expression of miR-133 (miR-133a, miR-133b), miR-1, miR-181 (miR-181a, miR-181b, miR-181c) and miR-206, that are specifically induced during myogenesis in cardiac and skeletal muscle tissues. miR-103 and miR-107, highly expressed in brain, heart and muscle have also been included in this study. QRT-PCR experiments have been performed on RNA from vastus lateralis biopsies of DM1 patients (n = 7) and control subjects (n = 4). Results of miRNAs expression have been confirmed by Northern blot, whereas in situ hybridization technique have been performed to localize misexpressed miRNAs on muscle sections from DM1 and control individuals.ResultsOnly miR-206 showed an over-expression in 5 of 7 DM1 patients (threshold = 2, fold change between 1.20 and 13.22, average = 5.37) compared to the control group. This result has been further confirmed by Northern blot analysis (3.37-fold overexpression, R2 = 0.89). In situ hybridization localized miR-206 to nuclear site both in normal and DM1 tissues. Cellular distribution in DM1 tissues includes also the nuclear regions of centralized nuclei, with a strong signal corresponding to nuclear clumps.ConclusionsThis work provides, for the first time, evidences about miRNAs misexpression in DM1 muscle tissues, adding a new element in the pathogenesis of this complex genetic disease.


Cell Death & Differentiation | 2010

Normal myogenesis and increased apoptosis in myotonic dystrophy type-1 muscle cells

Emanuele Loro; Fabrizio Rinaldi; Adriana Malena; Eva Masiero; Giuseppe Novelli; Corrado Angelini; Romeo; Marco Sandri; Annalisa Botta; Lodovica Vergani

Myotonic dystrophy (DM) is caused by a (CTG)n expansion in the 3′-untranslated region of DMPK gene. Mutant transcripts are retained in nuclear RNA foci, which sequester RNA binding proteins thereby misregulating the alternative splicing. Controversy still surrounds the pathogenesis of the DM1 muscle distress, characterized by myotonia, weakness and wasting with distal muscle atrophy. Eight primary human cell lines from adult-onset (DM1) and congenital (cDM1) patients, (CTG)n range 90–1800, were successfully differentiated into aneural-immature and contracting-innervated-mature myotubes. Morphological, immunohistochemical, RT-PCR and western blotting analyses of several markers of myogenesis indicated that in vitro differentiation–maturation of DM1 myotubes was comparable to age-matched controls. In all pathological muscle cells, (CTG)n expansions were confirmed by long PCR and RNA fluorescence in situ hybridization. Moreover, the DM1 myotubes showed the splicing alteration of insulin receptor and muscleblind-like 1 (MBNL1) genes associated with the DM1 phenotype. Considerable myotube loss and atrophy of 15-day-differentiated DM1 myotubes indicated activated catabolic pathways, as confirmed by the presence of apoptotic (caspase-3 activation, cytochrome c release, chromatin fragmentation) and autophagic (P62/LC3) markers. Z-VAD treatment significantly reduced the decrease in myonuclei number and in average width in 15-day-differentiated DM1 myotubes. We thus propose that the muscle wasting typical in DM1 is due to impairment of muscle mass maintenance–regeneration, through premature apoptotic–autophagic activation, rather than altered myogenesis.


Journal of Medical Genetics | 2008

The CTG repeat expansion size correlates with the splicing defects observed in muscles from myotonic dystrophy type 1 patients.

Annalisa Botta; Fabrizio Rinaldi; Claudio Catalli; Lodovica Vergani; Emanuela Bonifazi; Vincenzo Romeo; Emanuele Loro; Antonella Viola; Corrado Angelini; Giuseppe Novelli

Background: Myotonic dystrophy type 1 is caused by an unstable (CTG)n repetition located in the 3′UTR of the DM protein kinase gene (DMPK). Untranslated expanded DMPK transcripts are retained in ribonuclear foci which sequester CUG-binding proteins essential for the maturation of pre-mRNAs. Aim: To investigate the effects of CTG expansion length on three molecular parameters associated with the DM1 muscle pathology: (1) the expression level of the DMPK gene; (2) the degree of splicing misregulation; and (3) the number of ribonuclear foci. Methods: Splicing analysis of the IR, MBNL1, c-TNT and CLCN1 genes, RNA-FISH experiments and determination of the DMPK expression on muscle samples from DM1 patients with an expansion below 500 repetitions (n = 6), DM1 patients carrying a mutation above 1000 CTGs (n = 6), and from controls (n = 6). Results: The level of aberrant splicing of the IR, MBNL1, c-TNT and CLCN1 genes is different between the two groups of DM1 muscle samples and correlates with the CTG repeat length. RNA-FISH analysis revealed that the number of ribonuclear foci in DM1 muscle sections increases in patients with a higher (CTG)n number. No relationships were found between the expression level of the DMPK gene transcript and average expansion sizes. Conclusion: The CTG repeat length plays a key role in the extent of splicing misregulation and foci formation, thus providing a useful link between the genotype and the molecular cellular phenotype in DM1.


Gene Expression | 2006

Gene expression analysis in myotonic dystrophy: Indications for a common molecular pathogenic pathway in DM1 and DM2

Annalisa Botta; Laura Vallo; Fabrizio Rinaldi; Emanuela Bonifazi; Francesca Amati; Michela Biancolella; Stefano Gambardella; Enzo Mancinelli; Corrado Angelini; Giovanni Meola; Giuseppe Novelli

An RNA gain-of-function of expanded transcripts is the most accredited molecular mechanism for myotonic dystrophy type 1 (DM1) and 2 (DM2). To disclose molecular parallels and divergences in pathogenesis of both disorders, we compared the expression profile of muscle biopsies from DM1 and DM2 patients to controls. DM muscle tissues showed a reduction in the major skeletal muscle chloride channel (CLCN1) and transcription factor Sp1 transcript levels and an abnormal processing of the CLCN1 and insulin receptor (IR) pre-mRNAs. No essential differences were observed in the muscle blind-like gene (MBNL1) and CUG binding protein 1 (CUGBP1) transcript levels as well as in the splicing pattern of the myotubularin-related 1 (MTMR1) gene. Macroarray analysis of 96 neuroscience-related genes revealed a considerable similar expression profile between the DM samples, reflective of a common muscle pathology origin. Using a twofold threshold, we found six misregulated genes important in calcium and potassium metabolism and in mitochondrial functions. Our results indicate that the DM1 and DM2 overlapping clinical phenotypes may derive from a common trans acting mechanism that traps and influences shared genes and proteins. An RNA gain-of-function of expanded transcripts is the most accredited molecular mechanism for myotonic dystrophy type 1 (DM1) and 2 (DM2). To disclose molecular parallels and divergences in pathogenesis of both disorders, we compared the expression profile of muscle biopsies from DM1 and DM2 patients to controls. DM muscle tissues showed a reduction in the major skeletal muscle chloride channel (CLCN1) and transcription factor Sp1 transcript levels and an abnormal processing of the CLCN1 and insulin receptor (IR) pre-mRNAs. No essential differences were observed in the muscle blind-like gene (MBNL1) and CUG binding protein 1 (CUGBP1) transcript levels as well as in the splicing pattern of the myotubularin-related 1 (MTMR1) gene. Macroarray analysis of 96 neuroscience-related genes revealed a considerable similar expression profile between the DM samples, reflective of a common muscle pathology origin. Using a twofold threshold, we found six misregulated genes important in calcium and potassium metabolism and in mitochondrial functions. Our results indicate that the DM1 and DM2 overlapping clinical phenotypes may derive from a common trans acting mechanism that traps and influences shared genes and proteins.


Journal of Neurology | 2012

Co-segregation of DM2 with a recessive CLCN1 mutation in juvenile onset of myotonic dystrophy type 2

Rosanna Cardani; Marzia Giagnacovo; Annalisa Botta; Fabrizio Rinaldi; Alessandra Morgante; Bjarne Udd; Olayinka Raheem; Sini Penttilä; Tiina Suominen; Laura Valentina Renna; Valeria Sansone; Enrico Bugiardini; Giuseppe Novelli; Giovanni Meola

Myotonic dystrophy type 2 (DM2) is a common adult onset muscular dystrophy caused by a dominantly transmitted (CCTG)n expansion in intron 1 of the CNBP gene. In DM2 there is no obvious evidence for an intergenerational increase of expansion size, and no congenital cases have been confirmed. We describe the clinical and histopathological features, and provide the genetic and molecular explanation for juvenile onset of myotonia in a 14-year-old female with DM2 and her affected mother presenting with a more severe phenotype despite a later onset of symptoms. Histological and immunohistochemical findings correlated with disease severity or age at onset in both patients. Southern blot on both muscle and blood samples revealed only a small increase in the CCTG repeat number through maternal transmission. Fluorescence in situ hybridization, in combination with MBNL1 immunofluorescence on muscle sections, showed the presence of mutant mRNA and MBNL1 in nuclear foci; the fluorescence intensity and its area appeared to be similar in the two patients. Splicing analysis of the INSR, CLCN1 and MBNL1 genes in muscle tissue demonstrates that the level of aberrant splicing isoforms was lower in the daughter than in the mother. However, in the CLCN1 gene, a heterozygous mutation c.501C>G p.F167L was present in the daughter’s DNA and found to be maternally inherited. Biomolecular findings did not explain the unusual young onset in the daughter. The co-segregation of DM2 with a recessive CLCN1 mutation provided the explanation for the unusual clinical findings.


Neuromuscular Disorders | 2009

Ribonuclear inclusions and MBNL1 nuclear sequestration do not affect myoblast differentiation but alter gene splicing in myotonic dystrophy type 2

Rosanna Cardani; Simona Baldassa; Annalisa Botta; Fabrizio Rinaldi; Giuseppe Novelli; Enzo Mancinelli; Giovanni Meola

Myotonic dystrophy type 2 (DM2) is an autosomal dominant multisystemic disorder caused by a CCTG expansion in intron 1 of the zinc finger protein 9 gene on chromosome 3. Mutant transcripts are retained in muscle nuclei producing ribonuclear inclusions, which can bind specific RNA-binding proteins leading to a reduction in their activity. The nuclear sequestration of muscleblind-like proteins appears to be involved in splicing defects of genes directly related to the myotonic dystrophy phenotypes. Experimental evidence suggests that ribonuclear inclusions and muscleblind-like protein 1 (MBNL1) sequestration are strongly involved in DM2 pathogenesis. By using fluorescence in situ hybridization in combination with MBNL1-immunofluorescence, we have observed the presence of ribonuclear inclusions and MBNL1 nuclear sequestration at different time points of in vitro myoblast differentiation in each DM2 patient examined. Immunofluorescence and Western blot analysis of several markers of skeletal muscle differentiation reveal that the degree of differentiation of DM2 myoblasts is comparable to that observed in controls. Nevertheless the splicing pattern of the insulin receptor and MBNL1 transcripts, directly related to the DM2 phenotype, appears to be altered in in vitro differentiated DM2 myotubes. Our data seem indicate that the presence of ribonuclear inclusions and MBNL1 nuclear foci are involved in alteration of alternative splicing but do not impair DM2 myogenic differentiation.


The Journal of Molecular Diagnostics | 2010

Validation of sensitivity and specificity of tetraplet-primed PCR (TP-PCR) in the molecular diagnosis of myotonic dystrophy type 2 (DM2)

Claudio Catalli; Alessandra Morgante; Raniero Iraci; Fabrizio Rinaldi; Annalisa Botta; Giuseppe Novelli

Myotonic dystrophy type 2 (DM2, OMIM #602688) is a multisystemic hereditary degenerative disease caused by a tetranucleotide CCTG expansion in the ZNF9 gene. Routine testing strategies for DM2 require the use of Southern blot or long-range PCR, but the presence of very large expansions and wide somatic mosaicism greatly reduce the sensitivity of these reference techniques. We therefore developed and validated a tetraplet-primed PCR (TP-PCR) method to detect the DM2 mutation by testing 87 DM2-positive and 76 DM2-negative previously characterized patients. The specificity of this technique was evaluated including DNA samples from 39 DM1-positive patients. We then attempted a prospective analysis of 50 patients with unknown genotype who referred to our center for diagnostic or presymptomatic tests. Results show that TP-PCR is a fast, reliable, and flexible technique, whose specificity and sensitivity is almost 100%, with no false positive or negative results either in retrospective and prospective applications. We therefore conclude that using this technique, in combination with the short-range PCR, is sufficient to correctly establish the presence or the absence of ZNF9 expanded alleles in the molecular diagnosis of DM2.


Molecular Genetics and Metabolism | 2014

Strategies for treating mitochondrial disorders: An update

Mauro Scarpelli; Alice Todeschini; Fabrizio Rinaldi; Silvia Rota; Alessandro Padovani; Massimiliano Filosto

Mitochondrial diseases are a heterogeneous group of disorders resulting from primary dysfunction of the respiratory chain due to both nuclear and mitochondrial DNA mutations. The wide heterogeneity of biochemical dysfunctions and pathogenic mechanisms typical of this group of diseases has hindered therapy trials; therefore, available treatment options remain limited. Therapeutic strategies aimed at increasing mitochondrial functions (by enhancing biogenesis and electron transport chain function), improving the removal of reactive oxygen species and noxious metabolites, modulating aberrant calcium homeostasis and repopulating mitochondrial DNA could potentially restore the respiratory chain dysfunction. The challenge that lies ahead is the translation of some promising laboratory results into safe and effective therapies for patients. In this review we briefly update and discuss the most feasible therapeutic approaches for mitochondrial diseases.


Genetic Testing | 2008

Screening of EDA1 gene in X-linked anhidrotic ectodermal dysplasia using DHPLC: identification of 14 novel mutations in Italian patients.

Chiara Conte; Stefano Gambardella; Cristina Bulli; Fabrizio Rinaldi; Daniele Di Marino; Mattia Falconi; Placido Bramanti; Alessandro Desideri; Giuseppe Novelli

Mutations within EDA1 gene, which encodes for the ectodysplasin, cause X-linked anhidrotic ectodermal dysplasia. In this study, 23 Italian patients with anhidrotic ectodermal dysplasia were analyzed for mutations in EDA1 gene. We set up a rapid protocol through denaturing high-performance liquid chromatography, followed by sequencing, that allowed the characterization of 18 mutations, 14 novel and 4 recurrent: 8 missense mutations (p.L51Q, p.H54R, p.R156H twice, p.C332F, p.D316H, p.T378M, and p.A349T), 3 in-frame deletions (p.G82_P84del, p.A179_P191del, and p.L354del), 1 gross deletion (p.G168_G265del, identified through direct sequencing and PCR), 4 altered splicing (c.949-13T > C, c.741 + 1G/T, c.793 + 4A > T, and c.924 + 1G/T), 1 nonsense (p.Y3X), and 1 synonymous mutation (c.741G > A). Moreover, structural analysis of three missense mutations shows that alteration of the electrostatic surface of the protein (p.D316N), the break of intermonomer interactions (p.A349T) and destabilization of the single monomer structure (p.T378M), may irreversibly invalidate the EDA-A1 binding properties. Our data confirm and extend the large spectrum of EDA1 mutations and provide a rapid and efficient molecular protocol for testing EDA1 mutations in EDA patients.


Behavioural Neurology | 2015

Behavioural and Cognitive-Behavioural Treatments of Parasomnias.

Andrea Galbiati; Fabrizio Rinaldi; Enrico Giora; Luigi Ferini-Strambi; Sara Marelli

Parasomnias are unpleasant or undesirable behaviours or experiences that occur predominantly during or within close proximity to sleep. Pharmacological treatments of parasomnias are available, but their efficacy is established only for few disorders. Furthermore, most of these disorders tend spontaneously to remit with development. Nonpharmacological treatments therefore represent valid therapeutic choices. This paper reviews behavioural and cognitive-behavioural managements employed for parasomnias. Referring to the ICSD-3 nosology we consider, respectively, NREM parasomnias, REM parasomnias, and other parasomnias. Although the efficacy of some of these treatments is proved, in other cases their clinical evidence cannot be provided because of the small size of the samples. Due to the rarity of some parasomnias, further multicentric researches are needed in order to offer a more complete account of behavioural and cognitive-behavioural treatments efficacy.

Collaboration


Dive into the Fabrizio Rinaldi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giuseppe Novelli

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Annalisa Botta

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Galbiati

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge