Fagen Zhang
University of Illinois at Chicago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fagen Zhang.
Journal of the American Society for Mass Spectrometry | 2001
Yousheng Hua; Samuel B. Wainhaus; Yanan Yang; Lixin Shen; Yansan Xiong; Xiaoying Xu; Fagen Zhang; Judy L. Bolton; Richard B. van Breemen
Oxidized deoxynucleosides are widely used as biomarkers for DNA oxidation and oxidative stress assessment. Although gas chromatography mass spectrometry is widely used for the measurement of multiple DNA lesions, this approach requires complex sample preparation contributing to possible artifactual oxidation. To address these issues, a high performance liquid chromatography (HPLC)-tandem mass spectrometric (LC-MS/MS) method was developed to measure 8-hydroxy-2′-deoxyguanosine (8-OH-dG), 8-hydroxy-2′-deoxyadenosine (8-OH-dA), 2-hydroxy-2′-deoxyadenosine (2-OH-dA), thymidine glycol (TG), and 5-hydroxy-methyl-2′-deoxyuridine (HMDU) in DNA samples with fast sample preparation. In order to selectively monitor the product ions of these precursors with optimum sensitivity for use during quantitative LC-MS/MS analysis, unique and abundant fragment ions had to be identified during MS/MS with collision-induced dissociation (CID). Positive and negative ion electrospray tandem mass spectra with CID were compared for the analysis of these five oxidized deoxynucleosides. The most abundant fragment ions were usually formed by cleavage of the glycosidic bond in both positive and negative ion modes. However, in the negative ion electrospray tandem mass spectra of 8-OH-dG, 2-OH-dA, and 8-OH-dA, cleavage of two bonds within the sugar ring produced abundant S1 type ions with loss of a neutral molecule weighing 90 u, [M − H − 90]−. The signal-to-noise ratio was similar for negative and positive ion electrospray MS/MS except in the case of thymidine glycol where the signal-to-noise was 100 times greater in negative ionization mode. Therefore, negative ion electrospray tandem mass spectrometry with CID would be preferred to positive ion mode for the analysis of sets of oxidized deoxynucleosides that include thymidine glycol. Investigation of the fragmentation pathways indicated some new general rules for the fragmentation of negatively charged oxidized nucleosides. When purine nucleosides contain a hydroxyl group in the C8 position, an S1 type product ion will dominate the product ions due to a six-membered ring hydrogen transfer process. Finally, a new type of fragment ion formed by elimination of a neutral molecule weighing 48 (CO2H4) from the sugar moiety was observed for all three oxidized purine nucleosides.
Chemical Research in Toxicology | 1998
Judy L. Bolton; Emily Pisha; Fagen Zhang; Shengxiang Qiu
Chemical Research in Toxicology | 1999
Fagen Zhang; Yumei Chen; Emily Pisha; Li Shen; Yansan Xiong; Richard B. van Breemen; Judy L. Bolton
Chemical Research in Toxicology | 2000
Fagen Zhang; Peter W. Fan; Xuemei Liu; Lixin Shen; Richard B. van Breemen; Judy L. Bolton
Chemical Research in Toxicology | 2000
Yumei Chen; Xuemei Liu; Emily Pisha; Andreas I. Constantinou; Yousheng Hua; Lixin Shen; Richard B. van Breemen; Ebrahim C. Elguindi; Sylvie Y. Blond; Fagen Zhang; Judy L. Bolton
Chemical Research in Toxicology | 2003
Benjamin M. Johnson; Shengxiang Qiu; Shide Zhang; Fagen Zhang; Joanna E. Burdette; Linning Yu; Judy L. Bolton; Richard B. van Breemen
Chemical Research in Toxicology | 2001
Fagen Zhang; Steven M. Swanson; Richard B. van Breemen; Xuemei Liu; Yanan Yang; Chungang Gu; Judy L. Bolton
Chemical Research in Toxicology | 1998
Li Shen; Shengxiang Qiu; Yumei Chen; Fagen Zhang; Richard B. van Breemen; and Dejan Nikolic; Judy L. Bolton
Chemical Research in Toxicology | 1998
Yumei Chen; Li Shen; Fagen Zhang; Serrine S. Lau; Richard B. van Breemen; Dejan Nikolic; Judy L. Bolton
Chemical Research in Toxicology | 2004
Linning Yu; Hong Liu; Wenkui Li; Fagen Zhang; Connie Luckie; Richard B. van Breemen; Gregory R. J. Thatcher; Judy L. Bolton