Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fahad Mahmood is active.

Publication


Featured researches published by Fahad Mahmood.


Disease Models & Mechanisms | 2013

Generation and validation of a zebrafish model of EAST (epilepsy, ataxia, sensorineural deafness and tubulopathy) syndrome

Fahad Mahmood; Monika Mozere; Anselm A. Zdebik; Horia Stanescu; Jonathan Tobin; Philip L. Beales; Robert Kleta; Detlef Bockenhauer; Claire Russell

SUMMARY Recessive mutations in KCNJ10, which encodes an inwardly rectifying potassium channel, were recently identified as the cause of EAST syndrome, a severe and disabling multi-organ disorder consisting of epilepsy, ataxia, sensorineural deafness and tubulopathy that becomes clinically apparent with seizures in infancy. A Kcnj10 knockout mouse shows postnatal mortality and is therefore not suitable for drug discovery. Because zebrafish are ideal for in vivo screening for potential therapeutics, we tested whether kcnj10 knockdown in zebrafish would fill this need. We cloned zebrafish kcnj10 and demonstrated that its function is equivalent to that of human KCNJ10. We next injected splice- and translation-blocking kcnj10 antisense morpholino oligonucleotides and reproduced the cardinal symptoms of EAST syndrome – ataxia, epilepsy and renal tubular defects. Several of these phenotypes could be assayed in an automated manner. We could rescue the morphant phenotype with complementary RNA (cRNA) encoding human wild-type KCNJ10, but not with cRNA encoding a KCNJ10 mutation identified in individuals with EAST syndrome. Our results suggest that zebrafish will be a valuable tool to screen for compounds that are potentially therapeutic for EAST syndrome or its individual symptoms. Knockdown of kcnj10 represents the first zebrafish model of a salt-losing tubulopathy, which has relevance for blood pressure control.


Brain | 2013

A zebrafish model of CLN2 disease is deficient in tripeptidyl peptidase 1 and displays progressive neurodegeneration accompanied by a reduction in proliferation

Fahad Mahmood; Sonia Fu; Jennifer Cooke; Stephen W. Wilson; Jonathan D. Cooper; Claire Russell

Tripeptidyl peptidase 1 (TPP1) deficiency causes CLN2 disease, late infantile (or classic late infantile neuronal ceroid lipofuscinosis), a paediatric neurodegenerative disease of autosomal recessive inheritance. Patients suffer from blindness, ataxia, epilepsy and cognitive defects, with MRI indicating widespread brain atrophy, and profound neuron loss is evident within the retina and brain. Currently there are no effective therapies for this disease, which causes premature death in adolescence. Zebrafish have been successfully used to model a range of neurological and behavioural abnormalities. The aim of this study was to characterize the pathological and functional consequences of Tpp1 deficiency in zebrafish and to correlate these with human CLN2 disease, thereby providing a platform for drug discovery. Our data show that homozygous tpp1(sa0011) mutant (tpp1(sa0011)(-/-)) zebrafish display a severe, progressive, early onset neurodegenerative phenotype, characterized by a significantly small retina, a small head and curved body. The mutant zebrafish have significantly reduced median survival with death occurring 5 days post-fertilization. As in human patients with CLN2 disease, mutant zebrafish display storage of subunit c of mitochondrial ATP-synthase, hypertrophic lysosomes as well as localized apoptotic cell death in the retina, optic tectum and cerebellum. Further neuropathological phenotypes of these mutants provide novel insights into mechanisms of pathogenesis in CLN2 disease. Secondary neurogenesis in the retina, optic tectum and cerebellum is impaired and axon tracts within the spinal cord, optic nerve and the posterior commissure are disorganized, with the optic nerve failing to reach its target. This severe neurodegenerative phenotype eventually results in functional motor impairment, but this is preceded by a phase of hyperactivity that is consistent with seizures. Importantly, both of these locomotion phenotypes can be assayed in an automated manner suitable for high-throughput studies. Our study provides proof-of-principle that tpp1(sa0011)(-/-) mutants can utilize the advantages of zebrafish for understanding pathogenesis and drug discovery in CLN2 disease and other epilepsies.


PLOS ONE | 2013

Epilepsy in kcnj10 morphant zebrafish assessed with a novel method for long-term EEG recordings.

Anselm A. Zdebik; Fahad Mahmood; Horia Stanescu; Robert Kleta; Detlef Bockenhauer; Claire Russell

We aimed to develop and validate a reliable method for stable long-term recordings of EEG activity in zebrafish, which is less prone to artifacts than current invasive techniques. EEG activity was recorded with a blunt electrolyte-filled glass pipette placed on the zebrafish head mimicking surface EEG technology in man. In addition, paralysis of agarose-embedded fish using D-tubocurarine excluded movement artifacts associated with epileptic activity. This non-invasive recording technique allowed recordings for up to one hour and produced less artifacts than impaling the zebrafish optic tectum with a patch pipette. Paralyzed fish survived, and normal heartbeat could be monitored for over 1h. Our technique allowed the demonstration of specific epileptic activity in kcnj10a morphant fish (a model for EAST syndrome) closely resembling epileptic activity induced by pentylenetetrazol. This new method documented that seizures in the zebrafish EAST model were ameliorated by pentobarbitone, but not diazepam, validating its usefulness. In conclusion, non-invasive recordings in paralyzed EAST syndrome zebrafish proved stable, reliable and robust, showing qualitatively similar frequency spectra to those obtained from pentylenetetrazol-treated fish. This technique may prove particularly useful in zebrafish epilepsy models that show infrequent or conditional seizure activity.


Human Vaccines & Immunotherapeutics | 2014

Targeting inflammation as a therapeutic strategy for drug-resistant epilepsies An update of new immune-modulating approaches

Giovanna Vitaliti; Piero Pavone; Fahad Mahmood; Giuseppe Nunnari; Raffaele Falsaperla

An increasing body of literature data suggests that inflammation, and in particular neuroinflammation, is involved in the pathophysiology of particular forms of epilepsy and convulsive disorders. Animal models have been used to identify inflammatory triggers in epileptogenesis and inflammation has recently been shown to enhance seizures. For example, pharmacological blockade of the IL-1beta/IL-1 receptor type 1 axis during epileptogenesis has been demonstrated to provide neuroprotection in temporal lobe epilepsy. Furthermore, experimental models have suggested that neural damage and the onset of spontaneous recurrent seizures are modulated via complex interactions between innate and adaptive immunity. However, it has also been suggested that inflammation can occur as a result of epilepsy, since animal models have also shown that seizure activity can induce neuroinflammation, and that recurrent seizures maintain chronic inflammation, thereby perpetuating seizures. On the basis of these observations, it has been suggested that immune-mediated therapeutic strategies may be beneficial for treating some drug resistant epilepsies with an underlying demonstrable inflammatory process. Although the potential mechanisms of immunotherapeutic strategies in drug-resistant seizures have been extensively discussed, evidence on the efficacy of such therapy is limited. However, recent research efforts have been directed toward utilizing the potential therapeutic benefits of anti-inflammatory agents in neurological disease and these are now considered prime candidates in the ongoing search for novel anti-epileptic drugs. The objective of our review is to highlight the immunological features of the pathogenesis of seizures and to analyze possible immunotherapeutic approaches for drug resistant epilepsies that can alter the immune-mediated pathogenesis.


Human Vaccines & Immunotherapeutics | 2015

Epilepsy and innate immune system: A possible immunogenic predisposition and related therapeutic implications

Nassim Matin; Omidreza Tabatabaie; Raffaele Falsaperla; Riccardo Lubrano; Piero Pavone; Fahad Mahmood; Melissa Gullotta; Agostino Serra; Paola Di Mauro; Salvatore Cocuzza; Giovanna Vitaliti

Recent experimental studies and pathological analyses of patient brain tissue samples with refractory epilepsy suggest that inflammatory processes and neuroinflammation plays a key-role in the etiopathology of epilepsy and convulsive disorders. These inflammatory processes lead to the secretion of pro-inflammatory cytokines responsible for blood-brain-barrier disruption and involvement of resident immune cells in the inflammation pathway, occurring within the Central Nervous System (CNS). These elements are produced through activation of Toll-Like Receptors (TLRs) by exogenous and endogenous ligands thereby increasing expression of cytokines and co-stimulatory molecules through the activation of TLRs 2, 3, 4, and 9 as reported in murine studies.It has been demonstrated that IL-1β intracellular signaling and cascade is able to alter the neuronal excitability without cell loss. The activation of the IL-1β/ IL-1β R axis is strictly linked to the secretion of the intracellular protein MyD88, which interacts with other cell surface receptors, such as TLR4 during pathogenic recognition. Furthermore, TLR-signaling pathways are able to recognize molecules released from damaged tissues, such as damage-associated molecular patterns/proteins (DAMPs). Among these molecules, High-mobility group box-1 (HMGB1) is a component of chromatin that is passively released from necrotic cells and actively released by cells that are subject to profound stress. Moreover, recent studies have described models of epilepsy induced by the administration of bicuculline and kainic acid that highlight the nature of HMGB1-TLR4 interactions, their intracellular signaling pathway as well as their role in ictiogenesis and epileptic recurrence.The aim of our review is to focus on different branches of innate immunity and their role in epilepsy, emphasizing the role of immune related molecules in epileptogenesis and highlighting the research implications for novel therapeutic strategies.


Journal of Inherited Metabolic Disease | 2014

Modelling inborn errors of metabolism in zebrafish

Kim Wager; Fahad Mahmood; Claire Russell

The majority of human inborn errors of metabolism are fatal multisystem disorders that lack proper treatment and have a poorly understood mechanistic basis. Novel technologies are required to address this issue, and the use of zebrafish to model these diseases is an emerging field. Here we present the published zebrafish models of inborn metabolic diseases, discuss their validity, and review the novel mechanistic insights that they have provided. We also review the available methods for creating and studying zebrafish disease models, advantages and disadvantages of using this model organism, and successful examples of the use of zebrafish for drug discovery and development. Using a zebrafish to model inborn errors of metabolism in vivo, although still in its infancy, shows promise for a deeper understanding of disease pathomechanisms, onset, and progression, and also for the development of specific therapies.


Expert Review of Clinical Immunology | 2014

Epileptic seizures as a manifestation of cow’s milk allergy: a studied relationship and description of our pediatric experience

Raffaele Falsaperla; Piero Pavone; Stefano Miceli Sopo; Fahad Mahmood; Ferdinando Scalia; Giovanni Corsello; Riccardo Lubrano; Giovanna Vitaliti

Adverse reactions after ingestion of cow’s milk proteins can occur at any age, from birth and even amongst exclusively breast-fed infants, although not all of these are hypersensitivity reactions. The most common presentations related to cow’s milk protein allergy are skin reactions, failure to thrive, anaphylaxis as well as gastrointestinal and respiratory disorders. In addition, several cases of cow’s milk protein allergy in the literature have documented neurological involvement, manifesting with convulsive seizures in children. This may be due to CNS spread of a peripheral inflammatory response. Furthermore, there is evidence that pro-inflammatory cytokines are responsible for disrupting the blood–brain barrier, causing focal CNS inflammation thereby triggering seizures, although further studies are needed to clarify the pathogenic relationship between atopy and its neurological manifestations. This review aims to analyze current published data on the link between cow’s milk protein allergy and epileptic events, highlighting scientific evidence for any potential pathogenic mechanism and describing our clinical experience in pediatrics.


Expert Review of Neurotherapeutics | 2014

Usefulness of video-EEG in the paediatric emergency department.

Raffaele Falsaperla; Pasquale Striano; Pasquale Parisi; Riccardo Lubrano; Fahad Mahmood; Piero Pavone; Giovanna Vitaliti

Over the past two decades the EEG has technically improved from the use of analog to digital machines and more recently to video-EEG systems. Despite these advances, recording a technically acceptable EEG in an electrically hostile environment such as the emergency department (ED) remains a challenge, particularly with infants or young children. In 1996, a meeting of French experts established a set of guidelines for performing an EEG in the ED based on a review of the available literature. The authors highlighted the most suitable indications for an emergency EEG including clinical suspicion of cerebral death, convulsive and myoclonic status epilepticus, focal or generalized relapsing convulsive seizures as well as follow-up of known convulsive patients. They further recommended emergency EEG in the presence of doubt regarding the epileptic nature of the presentation as well as during the initiation or modification of sedation following brain injury. Subsequently, proposals for expanding the use of EEG in emergency patients have been advocated including trauma, vascular and anoxic-ischemic injury due to cardiorespiratory arrest, postinfective encephalopathy and nonconvulsive status epilepticus. The aim of this review is to show the diagnostic importance of video-EEG, as well as highlighting the predictive prognostic factors for positive and negative outcomes, when utilized in the pediatric ED for seizures as well as other neurological presentations.


Journal of Neurology, Neurosurgery, and Psychiatry | 2015

VALPROIC ACID EXTENDS LIFESPAN OF THE ZEBRAFISH MODEL OF CLN2 DISEASE (LATE INFANTILE NEURONAL CEROID LIPOFUSCINOSIS)

Fahad Mahmood; Anselm A. Zdebik; Alexandra Au; Jennifer Cooke; Claire Russell

CLN2 disease is a subtype of the neuronal ceroid lipofuscinoses (NCLs), a group of lysosomal storage disorders causing progressive, untreatable, neurodegeneration, intractable epilepsy and premature death in children. We have developed a permanent genetic zebrafish model of CLN2 disease due to a mutation in tpp1 encoding the lysosomal protease Tripeptidyl-peptidase-1 that replicates the neurodegenerative and storage phenotype. We hypothesize that CLN2 zebrafish display electrical and behavioural evidence of seizure activity that responds to established anti-convulsants and can further be used to develop novel therapeutic approaches. To validate the presence of seizures we performed single electrode electroencephalography showing CLN2 zebrafish had increased spiking activity vs wildtype with Fast-Fourier transform showing significantly increased amplitude about 2–4Hz. This was attenuated by Valproate (p=0.049), but not pentobarbitone. We also demonstrate that Valproate significantly reduces seizure-related movement bouts, thereby correlating movements and epileptiform activity. Lastly, we show exposure to Valproate significantly extends the lifespan of our zebrafish model with mortality between 3–6 days post-fertilization 8.33% in treated vs 33.3% in controls (p=0.01). The CLN2 zebrafish model thus displays electrical and behavioural seizure activity that can be attenuated by Valproate, with associated prolongation in survival. Moreover this model can utilize high-throughput in vivo screening assays to develop novel anti-convulsants.


Surgery for Obesity and Related Diseases | 2016

Factors predicting remission or improvement of Type 2 Diabetes after gastric bypass

Fahad Mahmood; Aruna Munasinghe; Christina Macano; Alistair Sharples; Ngozi Etumnu; Venkata Katreddy; Adriana Rotundo; Nagammapudur Balaji; Vittal Rao

Collaboration


Dive into the Fahad Mahmood's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claire Russell

Royal Veterinary College

View shared research outputs
Top Co-Authors

Avatar

Riccardo Lubrano

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pasquale Parisi

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer Cooke

Royal Veterinary College

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge