Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fahad N. Almajhdi is active.

Publication


Featured researches published by Fahad N. Almajhdi.


Journal of Medical Virology | 2012

Toll‐like receptor 3 polymorphism and its association with hepatitis B virus infection in Saudi Arabian patients

Ahmed A. Al-Qahtani; Mohammed N. Al-Ahdal; Ayman A. Abdo; Faisal M. Sanai; Nisreen Khalaf; Nisha A. Viswan; Hamad I. Al-Ashgar; Hind Al-Humaidan; Riham Al-Suwayeh; Zahid Hussain; Saud Alarifi; M. S. Alokail; Fahad N. Almajhdi

Hepatitis B virus (HBV) is the major causative agent of chronic liver complications including cirrhosis and hepatocellular carcinoma (HCC). Individuals infected with HBV show a wide spectrum of disease manifestations ranging from asymptomatic carriers to HCC. TLR3 is part of the innate immune system that recognizes double‐stranded RNA (dsRNA) and provides early immune response to exogenous antigens. The genetic polymorphisms such as single nucleotide polymorphisms (SNPs) in the TLR3 could be considered as factors for the susceptibility to viral pathogens including HBV. Due to lack of knowledge on the role of TLR3 polymorphisms in HBV infection, this study investigated the distribution of nine SNPs in the TLR3 gene and its association with Saudi Arabian patients infected with HBV. A total of 707 patients and 600 uninfected controls were examined for different parameters including the nine SNPs (rs5743311, rs5743312, rs1879026, rs5743313, rs5743314, rs5743315, rs111611328, rs78726532 and a newly identified SNP located at position 184322913 of chr4). The association analysis confirmed that only one SNP, rs1879026 (G/T), showed a significant difference (P = 0.0480; OR = 0.809, 95% CI = 0.655–0.999) in the distribution between HBV carriers and uninfected controls. While, the rest of the SNPs showed no significant association with regards to HBV infection or in the progression to cirrhosis of the liver and HCC. Furthermore, haplotype analysis revealed that one haplotype GCGA (rs1879026, rs5743313, rs5743314, and rs5743315, respectively), was associated significantly with HBV infection in this population. These findings indicate that genetic variations in the TLR3 gene could affect the outcome of HBV infection among Saudis. J. Med. Virol. 84:1353–1359, 2012.


Journal of Virology | 2011

Green fluorescent protein reporter system with transcriptional sequence heterogeneity for monitoring the interferon response.

Linah Mahmoud; Maher Al-Saif; Haitham M. Amer; Mustafa Sheikh; Fahad N. Almajhdi; Khalid S.A. Khabar

ABSTRACT The interferon (IFN) response is initiated by a variety of triggers, including viruses and foreign RNA, and involves several receptors and intracellular mediators. Although there are common cis-acting consensus sequences in the promoters of many genes stimulated during the IFN response, they exhibit core and context heterogeneity that may lead to differential transcriptional activity. We have developed and validated a live cell-based enhanced green fluorescent protein (EGFP) reporter system employing more than a hundred constructs containing multiple viruses and IFN response elements derived from a variety of promoters involved in immunity to viruses. Common and distinct response patterns were observed due to promoter heterogeneity in response to different stimuli, including IFN-α, TLR3-agonist double-stranded RNA, and several viruses. This information should serve as a resource in selecting specific reporters for sensing nonself ligands.


BMC Cancer | 2014

Human papillomavirus (HPV) type 16 E7 protein bodies cause tumour regression in mice

Mark Whitehead; Peter Öhlschläger; Fahad N. Almajhdi; Leonor Alloza; Pablo Marzábal; Ann E. Meyers; Inga I. Hitzeroth; Edward P. Rybicki

BackgroundHuman papillomaviruses (HPV) are the causative agents of cervical cancer in women, which results in over 250 000 deaths per year. Presently there are two prophylactic vaccines on the market, protecting against the two most common high-risk HPV types 16 and 18. These vaccines remain very expensive and are not generally affordable in developing countries where they are needed most. Additionally, there remains a need to treat women that are already infected with HPV, and who have high-grade lesions or cervical cancer.MethodsIn this paper, we characterize the immunogenicity of a therapeutic vaccine that targets the E7 protein of the most prevalent high-risk HPV - type 16 – the gene which has previously been shown to be effective in DNA vaccine trials in mice. The synthetic shuffled HPV-16 E7 (16E7SH) has lost its transforming properties but retains all naturally-occurring CTL epitopes. This was genetically fused to Zera®, a self-assembly domain of the maize γ-zein able to induce the accumulation of recombinant proteins into protein bodies (PBs), within the endoplasmic reticulum in a number of expression systems.ResultsHigh-level expression of the HPV 16E7SH protein fused to Zera® in plants was achieved, and the protein bodies could be easily and cost-effectively purified. Immune responses comparable to the 16E7SH DNA vaccine were demonstrated in the murine model, with the protein vaccine successfully inducing a specific humoral as well as cell mediated immune response, and mediating tumour regression.ConclusionsThe fusion of 16E7SH to the Zera® peptide was found to enhance the immune responses, presumably by means of a more efficient antigen presentation via the protein bodies. Interestingly, simply mixing the free PBs and 16E7SH also enhanced immune responses, indicating an adjuvant activity for the Zera® PBs.


In Vitro Cellular & Developmental Biology – Animal | 2014

Single-walled carbon nanotubes induce cytotoxicity and DNA damage via reactive oxygen species in human hepatocarcinoma cells

Saud Alarifi; Daoud Ali; Ankit Verma; Fahad N. Almajhdi; Ahmed A. Al-Qahtani

Carbon nanotubes (CNTs) are gradually used in various areas including drug delivery, nanomedicine, biosensors, and electronics. The current study aimed to explore the DNA damage and cytotoxicity due to single-walled carbon nanotubes (SWCNTs) on human hepatocarcinoma cells (HepG2). Cellular proliferative assay showed the SWCNTs to exhibit a significant cell death in a dose- and time-dependent manner. However, SWCNTs induced significant intracellular reactive oxygen species (ROS) production and elevated lipid peroxidation, catalase, and superoxide dismutase in the HepG2 cells. SWCNTs also induced significant decrease in GSH and increase caspase-3 activity in HepG2 cells. DNA fragmentation analysis using the alkaline single-cell gel electrophoresis showed that the SWCNTs cause genotoxicity in a dose- and time-dependent manner. Therefore, the study points towards the capability of the SWCNTs to induce oxidative stress resulting cytotoxicity and genomic instability. This study warrants more careful assessment of SWCNTs before their industrial applications.


PLOS ONE | 2014

Design of a highly effective therapeutic HPV16 E6/E7-specific DNA vaccine: optimization by different ways of sequence rearrangements (shuffling).

Fahad N. Almajhdi; Tilo Senger; Haitham M. Amer; Lutz Gissmann; Peter Öhlschläger

Persistent infection with the high-risk Human Papillomavirus type 16 (HPV 16) is the causative event for the development of cervical cancer and other malignant tumors of the anogenital tract and of the head and neck. Despite many attempts to develop therapeutic vaccines no candidate has entered late clinical trials. An interesting approach is a DNA based vaccine encompassing the nucleotide sequence of the E6 and E7 viral oncoproteins. Because both proteins are consistently expressed in HPV infected cells they represent excellent targets for immune therapy. Here we report the development of 8 DNA vaccine candidates consisting of differently rearranged HPV-16 E6 and E7 sequences within one molecule providing all naturally occurring epitopes but supposedly lacking transforming activity. The HPV sequences were fused to the J-domain and the SV40 enhancer in order to increase immune responses. We demonstrate that one out of the 8 vaccine candidates induces very strong cellular E6- and E7- specific cellular immune responses in mice and, as shown in regression experiments, efficiently controls growth of HPV 16 positive syngeneic tumors. This data demonstrates the potential of this vaccine candidate to control persistent HPV 16 infection that may lead to malignant disease. It also suggests that different sequence rearrangements influence the immunogenecity by an as yet unknown mechanism.


Journal of Medical Virology | 2012

Molecular characterization and phylogenetic analysis of human parainfluenza virus type 3 isolated from Saudi Arabia.

Fahad N. Almajhdi; Mohamed S. Alshaman; Haitham M. Amer

Human parainfluenza virus 3 (HPIV‐3) is a leading cause of respiratory disease in children worldwide. Previous sequence analyses of the entire virus genome, among different HPIV‐3 strains, demonstrated that HN is the most variable gene. There is a dearth of data on HPIV‐3 strains circulating in Saudi Arabia. In this report, HPIV‐3 was screened in nasopharyngeal aspirates collected from hospitalized children with acute respiratory disease during two successive seasons (2007/08 and 2008/09) using nested RT‐PCR. Out of 73 samples collected during 2007/08, seven (9.59%) were positive; while 3 out of 107 samples collected during 2008/09 (2.8%) were positive. Virus isolation in cell culture was successful using HEp2, but not Vero cells. The identity of the isolated viruses was confirmed using immunofluorescence and neutralization assays. To elucidate the genetic characteristics and phylogeny of Saudi HPIV‐3 strains, the complete HN gene sequence of two selected Saudi strains was analyzed in comparison to 20 strains isolated by others from different countries worldwide. Both strains showed the highest degree of sequence homology with Indian strains, followed by Chinese and most Japanese strains. Phylogenetic analysis confirmed that these strains fell into a distinct Asian lineage. This study is the first in Saudi Arabia to recover HPIV‐3 isolates of confirmed identity, and to generate sequence data that may help in understanding virus diversity and evolution. J. Med. Virol. 84: 1304–1311, 2012.


Journal of Virology | 2015

Human Cytokinome Analysis for Interferon Response

Suhad Al-Yahya; Linah Mahmoud; Fahad Al-Zoghaibi; Abdullah Al-Tuhami; Haithem Amer; Fahad N. Almajhdi; Stephen J. Polyak; Khalid S.A. Khabar

ABSTRACT Cytokines are a group of small secreted proteins that mediate a diverse range of immune and nonimmune responses to inflammatory and microbial stimuli. Only a few of these cytokines mount an antiviral response, including type I, II, and III interferons (IFNs). During viral infections and under inflammatory conditions, a number of cytokines and chemokines are coproduced with IFN; however, no systematic study exists on the interactions of the cytokine repertoire with the IFN response. Here, we performed the largest cytokine and chemokine screen (the human cytokinome, with >240 members) to investigate their modulation of type I and type II IFN responses in a cell line model. We evaluated the cytokine activities in both IFN-stimulated response element (ISRE) and IFN-γ activation sequence (GAS) reporter systems. Several cytokine clusters that augment either or both ISRE- and GAS-mediated responses to IFNs were derived from the screen. We identified novel modulators of IFN response—betacellulin (BTC), interleukin 11 (IL-11), and IL-17F—that caused time-dependent induction of the IFN response. The ability to induce endogenous IFN-β and IFN-stimulated genes varies among these cytokines and was largely dependent on Stat1, as assessed by Stat1 mutant fibroblasts. Certain cytokines appear to augment the IFN-β response through the NF-κB pathway. The novel IFN-like cytokines augmented the antiviral activity of IFN-α against several RNA viruses, including encephalomyocarditis virus, vesicular stomatitis virus, and influenza virus, in susceptible cell lines. Overall, the study represents a large-scale analysis of cytokines for enhancing the IFN response and identified cytokines capable of enhancing Stat1, IFN-induced gene expression, and antiviral activities. IMPORTANCE Innate immunity to viruses is an early defense system to ward off viruses. One mediator is interferon (IFN), which activates a cascade of biochemical events that aim to control the virus life cycle. In our work, we examined more than 200 cytokines, soluble mediators produced within the body as a result of infection, for the ability to enhance IFN action. We identified enhanced interactions with specific IFNs and cytokines. We also revealed that betacellulin, IL-17, and IL-11 cytokines have the novel property of enhancing the antiviral action of IFN against several viruses. These results demonstrate that the human genome codes for previously unknown proteins with unrelated functions that can augment the innate immunity to viruses. Knowing these interactions not only helps our understanding of immunity to viruses and emerging diseases, but can also lead to devising possible new therapeutics by enhancing the mediator of antiviral action itself, IFN.


Virology Journal | 2011

Immunological and molecular epidemiological characteristics of acute and fulminant viral hepatitis A

Zahid Hussain; Syed Akhtar Husain; Fahad N. Almajhdi; Premashis Kar

BackgroundHepatitis A virus is an infection of liver; it is hyperendemic in vast areas of the world including India. In most cases it causes an acute self limited illness but rarely fulminant. There is growing concern about change in pattern from asymptomatic childhood infection to an increased incidence of symptomatic disease in the adult population.ObjectiveIn-depth analysis of immunological, viral quantification and genotype of acute and fulminant hepatitis A virus.MethodsSerum samples obtained from 1009 cases of suspected acute viral hepatitis was employed for different biochemical and serological examination. RNA was extracted from blood serum, reverse transcribed into cDNA and amplified using nested PCR for viral quantification, sequencing and genotyping. Immunological cell count from freshly collected whole blood was carried out by fluorescence activated cell sorter.ResultsFulminant hepatitis A was mostly detected with other hepatic viruses. CD8+ T cells count increases in fulminant hepatitis to a significantly high level (P = 0.005) compared to normal healthy control. The immunological helper/suppressor (CD4+/CD8+) ratio of fulminant hepatitis was significantly lower compared to acute cases. The serologically positive patients were confirmed by RT-PCR and total of 72 (69.2%) were quantified and sequenced. The average quantitative viral load of fulminant cases was significantly higher (P < 0.05). There was similar genotypic distribution in both acute and fulminant category, with predominance of genotype IIIA (70%) compared to IA (30%).ConclusionsImmunological factors in combination with viral load defines the severity of the fulminant hepatitis A. Phylogenetic analysis of acute and fulminant hepatitis A confirmed genotypes IIIA as predominant against IA with no preference of disease severity.


Journal of Medical Virology | 2016

Epidemiology of 11 respiratory RNA viruses in a cohort of hospitalized children in Riyadh, Saudi Arabia

Haitham M. Amer; Mohamed S. Alshaman; Mohamed A. Farrag; Moawia Elead Hamad; Muslim M. Alsaadi; Fahad N. Almajhdi

Respiratory tract infections are a principal cause of illness and mortality in children worldwide and mostly caused by viruses. In this study, the epidemiology of 11 respiratory RNA viruses was investigated in a cohort of hospitalized children at a tertiary referral center in Riyadh from February 2008 to March 2009 using conventional and real‐time monoplex RT‐PCR assays. Among 174 nasopharyngeal aspirates, respiratory syncytial virus (RSV) was detected in 39 samples (22.41%), influenza A virus in 34 (19.54%), metapneumovirus (MPV) in 19 (10.92%), coronaviruses in 14 (8.05%), and parainfluenza viruses (PIVs) in 11 (6.32%). RSV, PIVs and coronaviruses were most prevalent in infants less than 6 months old, whereas MPV and influenza A virus were more prominent in children aged 7–24 and 25–60 months, respectively. The majority of the viruses were identified during winter with two peaks observed in March 2008 and January 2009. The presented data warrants further investigation to understand the epidemiology of respiratory viruses in Saudi Arabia on spatial and temporal basis. J. Med. Virol. 88:1086–1091, 2016.


Journal of Medical Virology | 2014

Hemagglutinin and neuraminidase genes of influenza B viruses circulating in Riyadh, Saudi Arabia during 2010–2011: Evolution and sequence analysis

Ghazanfar Ali; Haitham M. Amer; Fahad N. Almajhdi

Influenza viruses are known as continuing threats to human public health every year worldwide. Evolutionary dynamics of influenza B viruses in humans are in a unique progression having two lineages; B/Yam and B/Vic‐like viruses, which are circulating simultaneously worldwide. There is a considerable lack of data on influenza B viruses circulating in Saudi Arabia. During the winter‐spring season of 2010–2011, 80 nasopharyngeal aspirates were collected from hospitalized patients with flu‐like symptoms in Riyadh. Screening of samples by one‐step RT‐PCR identified three (3.8%) influenza B viruses. Sequencing of hemagglutinin (HA) and neuraminidase (NA) genes was performed to analyze influenza B viruses circulating in Riyadh as compared to the globally circulating strains. Several common and six unique amino acid substitutions were observed for both HA and NA genes of influenza B Saudi strains. Three unique substitutions (T182A, D196N, and K254R) were identified in HA gene of the B/Yam‐like Riyadh strains. In NA gene, a unique common substitution (D53G) was found in all Riyadh strains, while two unique substitutions (L38P, G233R) were recognized only in B/Vic‐like Riyadh strains. Riyadh strains were also found to contain N‐glycosylation site in HA gene of both B/Vic and B/Yam lineages at positions 197–199 (NET) and 196–198 (NNK/DNK), respectively. The significance of these mutations on the antigenicity of both lineages is discussed herein. The unique changes observed in HA and NA genes of influenza B Riyadh strains support strongly the need for continuous surveillance and monitoring of new evolving strains that might pose threat to the Saudi community. J. Med. Virol. 86:1003–1016, 2014.

Collaboration


Dive into the Fahad N. Almajhdi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge