Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Faheem Ahmed Khan is active.

Publication


Featured researches published by Faheem Ahmed Khan.


Plant Growth Regulation | 2015

Phytohormones and plant responses to salinity stress: a review

Shah Fahad; Saddam Hussain; Amar Matloob; Faheem Ahmed Khan; Abdul Khaliq; Shah Saud; Shah Hassan; Darakh Shan; Fahad Khan; Najeeb Ullah; Muhammad Faiq; Muhammad Rafiullah Khan; Afrasiab Khan Tareen; Aziz Khan; Abid Ullah; Nasr Ullah; Jianliang Huang

Plants are exposed to a variety of abiotic stresses in nature and exhibit unique and complex responses to these stresses depending on their degree of plasticity involving many morphological, cellular, anatomical, and physiological changes. Phytohormones are known to play vital roles in the ability of plants to acclimatize to varying environments, by mediating growth, development, source/sink transitions and nutrient allocation. These signal molecules are produced within the plant, and also referred as plant growth regulators. Although plant response to salinity depends on several factors; nevertheless, phytohormones are thought to be the most important endogenous substances that are critical in modulating physiological responses that eventually lead to adaptation to salinity. Response usually involves fluctuations in the levels of several phytohormones, which relates with changes in expression of genes involved in their biosynthesis and the responses they regulate. Present review described the potential role of different phytohormones and their balances against salinity stress and summarized the research progress regarding plant responses towards salinity at physiological and molecular levels. We emphasized the role of abscisic acid, indole acetic acid, cytokinins, gibberellic acid, salicylic acid, brassinosteroids, jasmonates, ethylene and triazoles in mediating plant responses and discussed their crosstalk at various baseline pathways transduced by these phytohormones under salinity. Current progress is exemplified by the identification and validation of several significant genes that enhanced crops tolerance to salinity, while missing links on different aspects of phytohormone related salinity tolerance are pointed out. Deciphering mechanisms by which plant perceives salinity and trigger the signal transduction cascades via phytohormones is vital to devise salinity related breeding and transgenic approaches.


Environmental Science and Pollution Research | 2015

Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment

Shah Fahad; Saddam Hussain; Asghari Bano; Shah Saud; Shah Hassan; Darakh Shan; Faheem Ahmed Khan; Fahad Khan; Yutiao Chen; Chao Wu; Ma Xiao Chun; Muhammad Afzal; Amanullah Jan; Mohammad Tariq Jan; Jianliang Huang

Plants are sessile beings, so the need of mechanisms to flee from unfavorable circumstances has provided the development of unique and sophisticated responses to environmental stresses. Depending on the degree of plasticity, many morphological, cellular, anatomical, and physiological changes occur in plants in response to abiotic stress. Phytohormones are small molecules that play critical roles in regulating plant growth and development, as well as stress tolerance to promote survival and acclimatize to varying environments. To congregate the challenges of salinity, temperature extremes, and osmotic stress, plants use their genetic mechanism and different adaptive and biological approaches for survival and high production. In the present attempt, we review the potential role of different phytohormones and plant growth-promoting rhizobacteria in abiotic stresses and summarize the research progress in plant responses to abiotic stresses at physiological and molecular levels. We emphasized the regulatory circuits of abscisic acid, indole acetic acid, cytokinins, gibberellic acid, salicylic acid, brassinosteroids, jasmonates, ethylene, and triazole on exposure to abiotic stresses. Current progress is exemplified by the identification and validation of several significant genes that enhanced crop tolerance to stress in the field. These findings will make the modification of hormone biosynthetic pathways for the transgenic plant generation with augmented abiotic stress tolerance and boosting crop productivity in the coming decades possible.


Plant Physiology and Biochemistry | 2015

A biochar application protects rice pollen from high-temperature stress.

Shah Fahad; Saddam Hussain; Shah Saud; Mohsin Tanveer; Ali Ahsan Bajwa; Shah Hassan; Adnan Noor Shah; Abid Ullah; Chao Wu; Faheem Ahmed Khan; Farooq Shah; Sami Ullah; Yajun Chen; Jianliang Huang

The influences of high temperature and fertilization with biochar and phosphorus (P) on the pollen characteristics of two rice cultivars (IR-64 and Huanghuazhan) were examined in controlled growth chambers. Temperature treatments included high daytime temperature (HDT), high nighttime temperature (HNT) and ambient temperature (AT). The fertilization treatments were control, biochar alone, P alone and biochar + P. High temperature severely reduced pollen fertility, anther dehiscence, pollen retention and pollen germination of both rice cultivars, with HNT more destructive than HDT. The Huanghuazhan cultivar performed better than IR-64 under high temperature, with higher pollen fertility, better anther dehiscence and greater pollen retention and germination rates. In both cultivars, the pollen of plants treated with biochar + P were more resistant to heat induced stress. Further studies are needed to test the ability of biochar to ameliorate the effects of different abiotic stresses in rice and other crops.


Biotechnology Letters | 2015

Recent developments in therapeutic protein expression technologies in plants

Shah Fahad; Faheem Ahmed Khan; Nuruliarizki Shinta Pandupuspitasari; Muhammad Mahmood Ahmed; Yu Cai Liao; Muhammad Tahir Waheed; Muhammad Sameeullah; Darkhshan; Saddam Hussain; Shah Saud; Shah Hassan; Amanullah Jan; Mohammad Tariq Jan; Chao Wu; Ma Xiao Chun; Jianliang Huang

Infectious diseases and cancers are some of the commonest causes of deaths throughout the world. The previous two decades have witnessed a combined endeavor across various biological sciences to address this issue in novel ways. The advent of recombinant DNA technologies has provided the tools for producing recombinant proteins that can be used as therapeutic agents. A number of expression systems have been developed for the production of pharmaceutical products. Recently, advances have been made using plants as bioreactors to produce therapeutic proteins directed against infectious diseases and cancers. This review highlights the recent progress in therapeutic protein expression in plants (stable and transient), the factors affecting heterologous protein expression, vector systems and recent developments in existing technologies and steps towards the industrial production of plant-made vaccines, antibodies, and biopharmaceuticals.


Virus Research | 2014

Interplay between microRNAs and host pathogen recognition receptors (PRRs) signaling pathways in response to viral infection

Ao Zhou; Shuaifeng Li; Junjing Wu; Faheem Ahmed Khan; Shujun Zhang

Antimicrobial response is greatly influenced by microRNAs (miRNAs) which are the important post-transcriptional regulators of gene expression. Simultaneously, host pathogen recognition receptors (PRRs) engaged by pathogen-associated molecular patterns (PAMPs) also play critical roles in activating innate immunity against microbial infection. Emerging evidences suggest that the interaction between microbial-regulated miRNAs and important PRRs signaling pathways influence host immune response to microbial pathogens. In this manuscript, we describe the roles of miRNAs in virus-regulated innate immune pathways and the crosstalk between miRNAs and PRRs, further breaking out the mechanistic dissection of miRNAs-PRRs in viral infection and the development of the prognosis of disease and novel miRNA-therapeutic strategies targeting immunity.


Frontiers in Plant Science | 2016

Comparative Transcriptional Profiling of Primed and Non-primed Rice Seedlings under Submergence Stress

Saddam Hussain; Hanqi Yin; Shaobing Peng; Faheem Ahmed Khan; Fahad Khan; Muhammad Sameeullah; Hafiz A. Hussain; Jianliang Huang; Kehui Cui; Lixiao Nie

Submergence stress is a limiting factor for direct-seeded rice systems in rainfed lowlands and flood-prone areas of South and Southeast Asia. The present study demonstrated that submergence stress severely hampered the germination and seedling growth of rice, however, seed priming alleviated the detrimental effects of submergence stress. To elucidate the molecular basis of seed priming-induced submergence tolerance, transcriptome analyses were performed using 4-day-old primed (selenium-Se and salicylic acid-SA priming) and non-primed rice seedlings under submergence stress. Genomewide transcriptomic profiling identified 2371 and 2405 transcripts with Se- and SA-priming, respectively, that were differentially expressed in rice compared with non-priming treatment under submergence. Pathway and gene ontology term enrichment analyses revealed that genes involved in regulation of secondary metabolism, development, cell, transport, protein, and metal handling were over-represented after Se- or SA-priming. These coordinated factors might have enhanced the submergence tolerance and maintained the better germination and vigorous seedling growth of primed rice seedlings. It was also found that many genes involved in cellular and metabolic processes such as carbohydrate metabolism, cellular, and metabolic biosynthesis, nitrogen compound metabolic process, transcription, and response to oxidative stress were induced and overlapped in seed priming treatments, a finding which reveals the common mechanism of seed priming-induced submergence tolerance. Taken together, these results may provide new avenues for understanding and advancing priming-induced responses to submergence tolerance in crop plants.


DNA and Cell Biology | 2015

DeSUMOylation: An Important Therapeutic Target and Protein Regulatory Event.

Chun-Jie Huang; Di Wu; Faheem Ahmed Khan; Li-Jun Huo

The discovery of the process of small ubiquitin-like modifier (SUMO)-mediated post-translational modification of targets (SUMOylation) in early 1990s proved to be a significant step ahead in understanding mechanistic regulation of proteins and their functions in diverse life processes at the cellular level. The critical step in reversing the SUMOylation pathway is its ability to be dynamically deSUMOylated by SUMO/sentrin-specific protease (SENP). This review is intended to give a brief introduction about the process of SUMOylation, different mammalian deSUMOylating enzymes with special emphasis on their regulation of ribosome biogenesis at the molecular level, and its emerging roles in mitochondrial dynamics that might reveal usefulness of SENPs for therapeutic applications.


Oncotarget | 2016

Porcine reproductive and respiratory syndrome virus triggers mitochondrial fission and mitophagy to attenuate apoptosis

Shuaifeng Li; Jiaxing Wang; Ao Zhou; Faheem Ahmed Khan; Lin Hu; Shujun Zhang

Porcine reproductive and respiratory syndrome virus (PRRSV) causes acute mitochondrial dysfunction by elevating the level of reactive oxygen species. Mitochondrial dynamics and mitophagy are essential for the maintenance of mitochondrial homeostasis. Here we show that PRRSV infection stimulated mitochondrial fission and mitophagy to attenuate apoptosis in Marc145 cells. PRRSV infection induced the expression of Drp1, enhanced phosphorylation of Drp1 at Ser616 and its subsequent translocation to mitochondria. Furthermore, PRRSV infection increased the expression of PINK1 and Parkin and also stimulated the recruitment of Parkin to mitochondria. In addition, a sensitive dual fluorescence vector expressing mito-mRFP-EGFP targeted mitochondria was employed to observe the complete mitophagy by delivering dysfunctional mitochondria to lysosome for degradation. Interfering the expression of Drp1 and or Parkin suppressed PRRSV replication. More importantly, silencing of Drp1 or Parkin caused significant elevation in apoptotic signaling. These results suggest that PRRSV infection stimulates mitochondrial fission and mitophagy to facilitate virus replication most probably by attenuating apoptosis.


Biotechnology Letters | 2014

Disease resistance in rice and the role of molecular breeding in protecting rice crops against diseases

Shah Fahad; Lixiao Nie; Faheem Ahmed Khan; Yutiao Chen; Saddam Hussain; Chao Wu; Dongliang Xiong; Wang Jing; Shah Saud; Farhan Anwar Khan; Yong Li; Wei Wu; Fahad Khan; Shah Hassan; Abdul Manan; Amanullah Jan; Jianliang Huang

Rice diseases (bacterial, fungal, or viral) threaten food productivity. Host resistance is the most efficient, environmentally friendly method to cope with such diverse pathogens. Quantitative resistance conferred by quantitative trait loci (QTLs) is a valuable resource for rice disease resistance improvement. Although QTLs confer partial but durable resistance to many pathogen species in different crop plants, the molecular mechanisms of quantitative disease resistance remain mostly unknown. Quantitative resistance and non-host resistance are types of broad-spectrum resistance, which are mediated by resistance (R) genes. Because R genes activate different resistance pathways, investigating the genetic spectrum of resistance may lead to minimal losses from harmful diseases. Genome studies can reveal interactions between different genes and their pathways and provide insight into gene functions. Protein–protein interaction (proteomics) studies using molecular and bioinformatics tools may further enlighten our understanding of resistance phenomena.


Virulence | 2016

Autophagy postpones apoptotic cell death in PRRSV infection through Bad-Beclin1 interaction

Ao Zhou; Shuaifeng Li; Faheem Ahmed Khan; Shujun Zhang

Autophagy and apoptosis play significant roles in PRRSV infection and replication. However, the interaction between these 2 processes in PRRSV replication is still far from been completely understood. In our studies, the exposure of MARC-145 cells to PRRSV confirmed the activation of autophagy and subsequent induction of apoptosis. The inhibition of autophagy by 3-methyladenine (3-MA) caused a significant increase in PRRSV-induced apoptosis, showing a potential connection between both mechanisms. Moreover, we observed an increase in Bad expression (a pro-apoptotic protein) and Beclin1 (an autophagy regulator) in virus-infected cells up to 36h. Co-immunoprecipitation assays showed the formation of Bad and Beclin1 complex in PRRSV infected cells. Accordingly, Bad co-localized with Beclin1 in MARC-145 infected cells. Knockdown of Beclin1 significantly decreased PRRSV replication and PRRSV-induced autophagy, while Bad silencing resulted in increased autophagy and enhanced viral replication. Furthermore, PRRSV infection phosphorylated Bad (Ser112) to promote cellular survival. These results demonstrate that autophagy can favor PRRSV replication by postponing apoptosis through the formation of a Bad-Beclin1 complex.

Collaboration


Dive into the Faheem Ahmed Khan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shujun Zhang

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Shah Fahad

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jianliang Huang

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Saddam Hussain

University of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Shah Saud

Northeast Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Muhammad Sameeullah

Abant Izzet Baysal University

View shared research outputs
Top Co-Authors

Avatar

Chao Wu

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Di Wu

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Fahad Khan

Huazhong Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge