Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fahiem E. El-Borai is active.

Publication


Featured researches published by Fahiem E. El-Borai.


Journal of Invertebrate Pathology | 2011

Entomopathogenic nematodes, phoretic Paenibacillus spp., and the use of real time quantitative PCR to explore soil food webs in Florida citrus groves.

Raquel Campos-Herrera; Fahiem E. El-Borai; Robin J. Stuart; James H. Graham; Larry W. Duncan

Quantitative real-time PCR (qPCR) is a powerful tool to detect and quantify species of cryptic organisms such as bacteria, fungi and nematodes from soil samples. As such, qPCR offers new opportunities to study the ecology of soil habitats by providing a single method to characterize communities of diverse organisms from a sample of DNA. Here we describe molecular tools to detect and quantify two bacteria (Paenibacillus nematophilus and Paenibacillus sp.) phoretically associated with entomopathogenic nematodes (EPNs) in the families Heterorhabditidae and Steinernematodae. We also extend the repertoire of species specific primers and TaqMan® probes for EPNs to include Heterorhabditis bacteriophora, Steinernema carpocapsae, Steinernema feltiae and Steinernema scapterisci, all widely distributed species used commercially for biological control. Primers and probes were designed from the ITS rDNA region for the EPNs and the 16S rDNA region for the bacteria. Standard curves were established using DNA from pure cultures of EPNs and plasmid DNA from the bacteria. The use of TaqMan probes in qPCR resolved the non-specificity of EPN and some bacterial primer amplifications whereas those for Paenibacillus sp. also amplified Paenibacillus thiaminolyticus and Paenibacillus popilliae, two species that are not phoretically associated with nematodes. The primer-probe sets for EPNs were able to accurately detect three infective juvenile EPNs added to nematodes recovered from soil samples. The molecular set for Paenibacillus sp. detected the bacterium attached to Steinernema diaprepesi suspended in water or added to nematodes recovered from soil samples but its detection decreased markedly in the soil samples, even when a nested PCR protocol was employed. Using qPCR we detected S. scapterisci at low levels in a citrus grove, which suggested natural long-distance spread of this exotic species, which is applied to pastures and golf courses to manage mole crickets (Scapteriscus spp.). Paenibacillus sp. (but not P. nematophilus) was detected in low quantities in the same survey but was unrelated to the spatial pattern of S. diaprepesi. The results of this research validate several new tools for studying the ecology of EPNs and their phoretic bacteria.


Journal of Invertebrate Pathology | 2012

Wide interguild relationships among entomopathogenic and free-living nematodes in soil as measured by real time qPCR

Raquel Campos-Herrera; Fahiem E. El-Borai; Larry W. Duncan

Entomopathogenic nematodes (EPNs) are promising biological control agents of soil-dwelling insect pests of many crops. These nematodes are ubiquitous in both natural and agricultural areas. Their efficacy against arthropods is affected directly and indirectly by food webs and edaphic conditions. It has long been suggested that a greater understanding of EPN ecology is needed to achieve consistent biological control by these nematodes and the development of molecular tools is helping to overcome obstacles to the study of cryptic organisms and complex interactions. Here we extend the repertoire of molecular tools to characterize soil food webs by describing primers/probe set to quantify certain free-living, bactivorous nematodes (FLBNs) that interact with EPNs in soil. Three FLBN isolates were recovered from soil baited with insect larvae. Morphological and molecular characterization confirmed their identities as Acrobeloides maximum (RT-1-R15C and RT-2-R25A) and Rhabditis rainai (PT-R14B). Laboratory experiments demonstrated the ability of these FLBNs to interfere with the development of Steinernema diaprepesi, Steinernema riobrave and Heterorhabditis indica parasitizing the weevil Diaprepes abbreviatus (P<0.001), perhaps due to resource competition. A molecular probe was developed for the strongest competitor, A. maximum. We selected the highly conserved SSU rDNA sequence to design the primers/probe, because these sequences are more abundantly available for free-living nematodes than ITS sequences that can likely provide better taxonomic resolution. Our molecular probe can identify organisms that share ⩾98% similarity at this locus. The use of this molecular probe to characterize soil communities from samples of nematode DNA collected within a citrus orchard revealed positive correlations (P<0.01) between Acrobeloides-group nematodes and total numbers of EPNs (S. diaprepesi, H. indica and Heterorhabditis zealandica) as well as a complex of nematophagous fungi comprising Catenaria sp. and Monachrosporium gephyropagum that are natural enemies of EPNs. These relationships can be broadly interpreted as supporting Linfords hypothesis, i.e., decomposition of organic matter (here, insect cadavers) greatly increases bactivorous nematodes and their natural enemies.


Fungal Biology | 2012

Use of real-time PCR to discriminate parasitic and saprophagous behaviour by nematophagous fungi

Ekta Pathak; Fahiem E. El-Borai; Raquel Campos-Herrera; Evan G. Johnson; Robin J. Stuart; James H. Graham; Larry W. Duncan

Entomopathogenic nematodes (EPNs) are important pathogens of soilborne insects and are sometimes developed commercially to manage insect pests. Numerous nematophagous fungal species (NF) prey on nematodes and are thought to be important in regulating natural or introduced EPN populations. However, nematophagy by these fungi in nature cannot be inferred using existing methods to estimate their abundance in soil because many of these fungi are saprophytes, resorting to parasitism primarily when certain nutrients are limiting. Therefore, we developed an assay to quantify NF DNA in samples of nematodes. Species-specific primers and TaqMan probes were designed from the ITS rDNA regions of Arthrobotrys dactyloides, Arthrobotrys oligospora, Arthrobotrys musiformis, Gamsylella gephyropagum and Catenaria sp. When tested against 23 non-target fungi, the TaqMan real-time PCR assay provided sensitive and target-specific quantification over a linear range. The amount of A. dactyloides or Catenaria sp. DNA in 20 infected nematodes, measured by real-time PCR, differed between fungal species (P=0.001), but not between experiments (P>0.05). However, estimates of relative NF parasitism using a bioassay with 20 nematodes infected by either species, differed greatly (P<0.001) depending on whether the fungi were alone or combined in the samples used in the assay. Tests done to simulate detection of NF DNA in environmental samples showed that, for all species, background genomic DNA and/or soil contaminants reduced the quantity of DNA detected. Nested PCR was ineffective for increasing the detection of NF in environmental samples. Indeed, real-time PCR detected higher amounts of NF DNA than did nested PCR. The spatial patterns of NF parasitism in a citrus orchard were derived using real-time PCR and samples of nematodes extracted from soil. The parasitism by Catenaria sp. was positively related to the abundance of both heterorhabditid and steinernematid EPNs. The possible significance of the associations is ambiguous because NF attack a broad range of nematode taxa whereas EPNs are a small minority of the total nematode population in a soil sample. These studies demonstrate the potential of real-time PCR to study the role of NF parasitism in soil food webs.


Journal of Invertebrate Pathology | 2012

Entomopathogenic nematodes, root weevil larvae, and dynamic interactions among soil texture, plant growth, herbivory, and predation

Fahiem E. El-Borai; Robin J. Stuart; Raquel Campos-Herrera; Ekta Pathak; Larry W. Duncan

Greenhouse experiments were conducted to assess the influence of soil texture on the persistence, efficacy and plant protection ability of entomopathogenic nematodes (EPNs) applied to control larvae of the Diaprepes root weevil (DRW), Diaprepes abbreviatus, infesting potted citrus seedlings. Seedlings were grown in pots containing either coarse sand, fine sand, or sandy loam. Three DRW larvae were added to each of 80 pots of each soil type. 24 h later, 20 pots of each soil type that had received weevil larvae were inoculated with EPN infective juveniles (IJs) of one of the following species: Steinernema diaprepesi, Steinernema riobrave and Heterorhabditis indica. Pots of each soil without EPNs were established as controls with DRW and controls without DRWs. Subsequently, pots with larvae received three additional larvae monthly, and the experiment continued for 9 months. Plant root and top weights at the end of the experiment were affected by both soil (P≤0.0001) and nematodes (P≤0.0001), and nematode species protected plants differently in different soils (interaction P≤0.0001). Soil porosity was inversely related to plant damage by DRW, whether or not EPNs were present; and porosity was directly related to the level of plant protection by EPNs. Mortality of caged sentinel weevil larvae placed in pots near the end of the experiment was highest in pots treated with S. diaprepesi. In a second, similar experiment that included an additional undescribed steinernematid of the Steinernema glaseri-group, soil type affected root damage by DRW and root protection by EPNs in the same manner as in the first experiment. Final numbers of S. diaprepesi and Steinernema sp. as measured by real-time PCR were much greater than those of S. riobrave or H. indica in all soils. Across all treatments, the number of weevil larvae in soil at the end the experiment was inversely related to soil porosity. In all soils, fewer weevil larvae survived in soil treated with S. diaprepesi or Steinernema sp. than in controls with DRW or treatments with S. riobrave or H. indica. The results of these experiments support the hypothesis that EPNs provide greater protection of seedlings against DRW larvae in coarse textured soil than in finer textured soil. However, less vigorous growth of the control without DRW seedlings in the two finer textured soils suggests that unidentified factors that stressed seedlings in those soils also impaired the ability of seedlings to tolerate weevil herbivory.


Nematology | 2009

Differential susceptibility of entomopathogenic nematodes to nematophagous fungi from Florida citrus orchards.

Fahiem E. El-Borai; Diane B. Bright; James H. Graham; Robin J. Stuart; J. Cubero; Larry W. Duncan

Laboratory experiments were conducted to study the effects of various trapping and endoparasitic nematophagous fungi (NF) isolated from Florida citrus orchards on five entomopathogenic nematode (EPN) species that show various distributions across Floridas citrus industry. Four trapping NF ( Arthrobotrys oligospora , A. dactyloides , A. musiformis and Gamsylella gephyropaga ) and two endoparasitic NF ( Catenaria sp. and Myzocytium sp.) were tested against Steinernema diaprepesi (Sd), S. glaseri (Sg), S. riobrave (Sr), Heterorhabditis zealandica (Hz) and H. indica (Hi). Fungi were added to soil microcosms either as a pure culture on agar plugs (trapping NF) or as fungal-colonised nematodes (endoparasitic NF) on agar plugs, concurrently with 2000 EPN of a given species. After 7 or 14 days exposure, nematodes were recovered from the soil using Baermann funnels. The recovery of all EPN species was reduced between 56-92% by G. gephyropaga . Neither Sd or Sg were affected by any species of Arthrobotrys , whereas A. musiformis reduced recovery of all other EPN and A. oligospora reduced numbers of all other species except Hi. Both endoparasitic NF reduced the recovery of all EPN except Hi by at least 82%. The data are consistent with the hypothesis that NF may play a role in regulating regional patterns of abundance and diversity of EPN species in Florida, which in turn regulate the abundance of a major citrus pest, the Diaprepes root weevil, Diaprepes abbreviatus .


Molecular Ecology Resources | 2012

Real-time PCR as an effective technique to assess the impact of phoresy by Paenibacillus sp. bacteria on Steinernema diaprepesi nematodes in nature

Raquel Campos-Herrera; Fahiem E. El-Borai; Larry W. Duncan

Quantitative real‐time PCR (qPCR) is a powerful tool to study species of cryptic organisms in complex food webs. This technique was recently developed to detect and quantify several species of entomopathogenic nematodes (EPNs), which are widely used for biological control of insects, and some natural enemies of EPNs such as nematophagous fungi and the phoretic bacteria Paenibacillus sp. and Paenibacillus nematophilus. A drawback to the use of primers and TaqMan probes designed for Paenibacillus sp. is that the qPCR also amplified Paenibacillus thiaminolyticus and Paenibacillus popilliae, two closely related species that are not phoretically associated with EPNs. Here, we report that the detection of Paenibacillus sp. DNA in nematode samples was two orders of magnitude greater (P < 0.001) when the bacterium was added to soil together with its EPN species‐specific host Steinernema diaprepesi than when it was added concomitantly with other EPNs or with species of bacterial‐feeding nematodes. Just 6% of samples detected trace amounts of P. thiaminolyticus and P. popilliae exposed to the same experimental conditions. Thus, although the molecular assay detects Paenibacillus spp. DNA in nonphoretic associations, the levels are essentially background compared to the detection of Paenibacillus sp. in association with its nematode host.


Archive | 2010

Entomopathogenic Nematode Ecology and Biological Control in Florida Citrus Orchards

Raquel Campos-Herrera; Robin J. Stuart; Fahiem E. El-Borai; Carmen Gutiérrez; Larry W. Duncan

Biological control through augmentation of entomopathogenic nematodes (EPNs) in soil is an important component of integrated pest management (IPM) of the root weevil, Diaprepes abbreviatus, in Florida citrus orchards for over 20 years. However, to improve the effectiveness of EPNs for weevil control substantial information is needed about the post-application biology of EPNs as well as the ecology and importance of endemic species for weevil management. Current status of EPNs augmentation as a weevil control tactic, their role in soil food webs in different habitats, and the biocontrol potentials of endemic EPN communities, are reviewed. We also discuss molecular approaches to assess EPN population distribution and dynamics, and how these techniques could contribute to our understanding of nematodes ecology to enhance EPNs in biocontrol. Basic and applied study of EPNs increased during the past half-century, accelerating awareness of limitations for many conventional management practices. Understanding the EPNs population biology is necessary to discover and exploit new ways to increase their efficacy and reliability for biological control in managed ecosystems.


Frontiers in Microbiology | 2016

Concilience in Entomopathogenic Nematode Responses to Water Potential and Their Geospatial Patterns in Florida

Fahiem E. El-Borai; Nabil Killiny; Larry W. Duncan

The geospatial patterns of four species of native entomopathogenic nematodes in Florida were previously shown to be related to soil properties that affect soil water potential. Here we compared the responses to water potential of third stage, infective juvenile (IJ), Steinernema sp. (Sx), and Steinernema diaprepesi (Sd) in controlled conditions. The two species were selected because they are closely related (Steinernema glaseri-group), but tend to occupy different habitats. In columns of sandy soil with moisture gradients ranging from field capacity (6% w:w) to saturated (18%), Sx migrated toward wetter soil whereas Sd migrated toward drier soil. Survival of two isolates each of Sx and Sd for 7 days in the absence of food was greatest at 18 and 6% soil moisture, respectively. After three cycles of migration through soil to infect insect larvae 10 cm distant, Sd dominated EPN communities when soil columns were maintained at 6% moisture, whereas Sx was dominant in soil maintained at 18% moisture. When rehydrated after 24 h on filter paper at 90% RH, 50% of Sd survived compared to no Sx. Two isolates of Sd also survived better than two isolates of Sx during up to 24 h in a hypertonic solution (30% glycerol). The behavioral responses of both species to water potential and osmotic gradients were consistent with surveys in which Sx was recovered only from flatwoods ecoregions with shallow water tables and poorly drained soils, whereas Sd most frequently inhabited the central ridge ecoregion comprising well-drained soils and deeper water tables. Comparative proteomic analysis revealed differential expression of proteins involved in thermo-sensation (guanylyl cyclase and F13E6-4) and mechano-sensation and movement (paramyosin, Actin 3, LET-99, CCT-2), depending on whether Sd was in soil at 6 or 18% moisture. Proteins involved in metabolism, lectin detoxification, gene regulation, and cell division also differed between the two conditions. Our data suggest the plausibility of modifying soil moisture conditions in flatwoods orchards in ways that favor more desirable (effective) EPN species. Similarly, these particular behavioral traits are likely to be useful in guiding the selection or engineering of EPN species for use in different ecoregions.


Pest Management Science | 2017

Biological control potential of entomopathogenic nematodes for management of Caribbean fruit fly, Anastrepha suspensa Loew (Tephritidae).

William K. Heve; Fahiem E. El-Borai; Daniel Carrillo; Larry W. Duncan

BACKGROUND Caribbean fruit fly (Caribfly) is a serious economic insect pest because of development of larvae that hatch from eggs oviposited into fruits by female adults. This study assessed the virulence of twelve entomopathogenic nematode (EPN) isolates to Caribfly in laboratory bioassays as a starting point toward evaluation of management strategies for the fruit-to-soil-dwelling stages of A. suspensa in fields infested by Caribfly. RESULTS Inoculation of A. suspensa with 1 mL of ca 200 IJs larva-1 killed Caribfly at either larval or pupal stage. Pupae were more resistant to EPN infections than larvae. Adult emergence from inoculated pupae in soil microcosms was significantly lower than that observed in filter paper assays. Longest or largest steinernematids suppressed emergence of more adult Caribfly from pupae in soils, whereas shorter heterorhabditids were more infectious to Caribfly larvae. The highest mortalities of A. suspensa were caused by exotic nematodes Steinernema feltiae and Heterorhabditis bacteriophora, followed by the native Heterorhabditis indica and the exotic Steinernema carpocapsae. CONCLUSION Entomopathogenic nematodes reduced the development of Caribfly larvae and pupae to adult in our bioassays, suggesting that EPNs have potential for biological control of A. suspensa. Future work will assess management strategies, using the virulent EPNs, in orchards infested by A. suspensa.


Journal of Invertebrate Pathology | 2018

The saprophytic fungus Fusarium solani increases the insecticidal efficacy of the entomopathogenic nematode Steinernema diaprepesi

Sheng-Yen Wu; Fahiem E. El-Borai; James H. Graham; Larry W. Duncan

In two field surveys, high proportions of Galleria mellonella L. (Lepidoptera: Pyralidae) sentinel larval cadavers were infected by Fusarium solani without evidence of concomitant entomopathogenic nematode (EPN) or entomopathogenic fungus (EPF) reproduction. Because F. solani is not considered entomopathogenic, the survey suggested the possibility that F. solani competes with EPNs. We tested the hypotheses that F. solani attracts the EPN, Steinernema diaprepesi, to facilitate infection of Diaprepes root weevils (Diaprepes abbreviatus L.) and thereafter competes with the nematode in the insect cadaver. In two-choice olfactometer assays where one side was treated with F. solani mycelia and conidia, juvenile S. diaprepesi were attracted to the fungus, in either raw soil, or in autoclaved soil in the presence or absence of insects. However, this attraction was attenuated as the habitat became more complex, by using raw soil in combination with insect larvae. Fusarium oxysporum did not recruit the nematode. When soil microcosms were tested with F. solani conidia and S. diaprepesi, the concomitant infection increased the mortality of the insect (P = 0.02) to 83%, compared to 58% and 0% mortality when nematodes or fungi were individually applied, respectively. Concomitant inoculation also increased the number of cadavers that supported nematode reproduction and increased the population density of fungus in soil. The number of IJs entering the host insect was not affected by F. solani. These results support the possibility that F. solani can facilitate the insecticidal efficiency of S. diaprepesi in order to exploit the resources in the cadaver.

Collaboration


Dive into the Fahiem E. El-Borai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge