Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fahmida Irin is active.

Publication


Featured researches published by Fahmida Irin.


ACS Nano | 2012

Dispersions of Non-Covalently Functionalized Graphene with Minimal Stabilizer

Dorsa Parviz; Sriya Das; H.S. Tanvir Ahmed; Fahmida Irin; Sanjoy K. Bhattacharia; Micah J. Green

We demonstrate that functionalized pyrene derivatives effectively stabilize single- and few-layer graphene flakes in aqueous dispersions. The graphene/stabilizer yield obtained by this method is exceptionally high relative to conventional nanomaterial stabilizers such as surfactants or polymers. The mechanism of stabilization by pyrene derivatives is investigated by studying the effects of various parameters on dispersed graphene concentration and stability; these parameters include stabilizer concentration, initial graphite concentration, solution pH, and type and number of functional groups and counterions. The effectiveness of the pyrene derivatives is pH-tunable, as measured by zeta potential, and is also a function of the number of functional groups, the electronegativity of the functional group, the counterion, the relative polarity between stabilizer and solvent, and the distance from the functional group to the basal plane. Even if the dispersion is destabilized by extreme pH or lyophilization, the graphene does not aggregate because the stabilizer remains adsorbed on the surface. These dispersions also show promise for applications in graphene/polymer nanocomposites (examined in this paper), organic solar cells, conductive films, and inkjet-printed electronic devices.


ACS Applied Materials & Interfaces | 2013

Rheology and Morphology of Pristine Graphene/Polyacrylamide Gels

Sriya Das; Fahmida Irin; Lan Ma; Sanjoy K. Bhattacharia; Ronald C. Hedden; Micah J. Green

Enhancement of toughness in nanomaterial-based hydrogels is a critical metric for many of their engineering applications. Pristine graphene-polyacrylamide (PAM) hydrogels are synthesized via in situ polymerization of acrylamide monomer in PAM-stabilized graphene dispersion. In-situ polymerization leads to the uniform dispersion of the graphene sheets in the hydrogel. The graphene sheets interact with the elastic chains of the hydrogel through physisorption and permit gelation in the absence of any chemical cross-linker. This study represents the first report of pristine graphene as a physical cross-linker in a hydrogel. The properties of the graphene-polymer hydrogel are characterized by rheological measurements and compressive tests, revealing an increase in the storage modulus and toughness of the hydrogels compared to the chemically cross-linked PAM analogues. The physically cross-linked graphene hydrogels also exhibit self-healing properties. These hydrogels prove to be efficient precursors for graphene-PAM aerogels with enhanced electrical conductivity and thermal stability.


Science of The Total Environment | 2013

Determination of multi-walled carbon nanotube bioaccumulation in earthworms measured by a microwave-based detection technique.

Shibin Li; Fahmida Irin; Francis O. Atore; Micah J. Green; Jaclyn E. Cañas-Carrell

Reliable quantification techniques for carbon nanotubes (CNTs) are limited. In this study, a new procedure was developed for quantifying multi-walled carbon nanotubes (MWNTs) in earthworms (Eisenia fetida) based on freeze drying and microwave-induced heating. Specifically, earthworms were first processed into a powder by freeze drying. Then, samples were measured by utilizing 10 s exposure to 30 W microwave power. This method showed the potential to quantitatively measure MWNTs in earthworms at low concentrations (~0.1 μg in 20 mg of earthworm). Also, a simple MWNT bioaccumulation study in earthworms indicated a low bioaccumulation factor of 0.015±0.004. With an appropriate sample processing method and instrumental parameters (power and exposure time), this technique has the potential to quantify MWNTs in a variety of sample types (plants, earthworms, human blood, etc.).


Small | 2015

Tailored Crumpling and Unfolding of Spray-Dried Pristine Graphene and Graphene Oxide Sheets.

Dorsa Parviz; Shane D. Metzler; Sriya Das; Fahmida Irin; Micah J. Green

For the first time, pristine graphene can be controllably crumpled and unfolded. The mechanism for graphene is radically different than that observed for graphene oxide; a multifaced crumpled, dimpled particle morphology is seen for pristine graphene in contrast to the wrinkled, compressed surface of graphene oxide particles, showing that surface chemistry dictates nanosheet interactions during the crumpling process. The process demonstrated here utilizes a spray-drying technique to produce droplets of aqueous graphene dispersions and induce crumpling through rapid droplet evaporation. For the first time, the gradual dimensional transition of 2D graphene nanosheets to a 3D crumpled morphology in droplets is directly observed; this is imaged by a novel sample collection device inside the spray dryer itself. The degree of folding can be tailored by altering the capillary forces on the dispersed sheets during evaporation. It is also shown that the morphology of redispersed crumpled graphene powder can be controlled by solvent selection. This process is scalable, with the ability to rapidly process graphene dispersions into powders suitable for a variety of engineering applications.


Langmuir | 2013

Ultralow percolation threshold in aerogel and cryogel templated composites.

Fahmida Irin; Sriya Das; Francis O. Atore; Micah J. Green

We demonstrate a novel concept for preparing percolating composites with ultralow filler content by utilizing nanofiller-loaded aerogel and cryogels as a conductive template. This concept is investigated for several porous systems, including resorcinol-formaldehyde (RF), silica, and polyacrylamide (PAM) gels, and both graphene and carbon nanotubes are utilized as nanofiller. In each case, a stable, aqueous nanofiller dispersion is mixed with a sol-gel precursor and polymerized to form a hydrogel, which can then be converted to an aerogel by critical point drying or cryogel by freeze-drying. Epoxy resin is infused into the pores of the gels by capillary action without disrupting the monolithic structure. We show that conductive graphene/epoxy composites are formed with a very low graphene loading; a percolation threshold as low as 0.012 vol % is obtained for graphene-RF cryogel/epoxy composite. This is the lowest reported threshold of any graphene-based nanocomposites. Similar values are achieved in other aerogel and nanofiller systems, which demonstrates the versatility of this method.


Journal of Colloid and Interface Science | 2015

Adsorption and removal of graphene dispersants

Fahmida Irin; Matthew J. Hansen; Rozana Bari; Dorsa Parviz; Shane D. Metzler; Sanjoy K. Bhattacharia; Micah J. Green

We demonstrate three different techniques (dialysis, vacuum filtration, and spray drying) for removal of dispersants from liquid-exfoliated graphene. We evaluate these techniques for elimination of dispersants from both the bulk liquid phase and from the graphene surface. Thermogravimetric analysis (TGA) confirms dispersant removal by these treatments. Vacuum filtration (driving by convective mass transfer) is the most effective method of dispersant removal, regardless of the type of dispersant, removing up to ∼95 wt.% of the polymeric dispersant with only ∼7.4 wt.% decrease in graphene content. Dialysis also removes a significant fraction (∼70 wt.% for polymeric dispersants) of un-adsorbed dispersants without disturbing the dispersion quality. Spray drying produces re-dispersible, crumpled powder samples and eliminates much of the unabsorbed dispersants. We also show that there is no rapid desorption of dispersants from the graphene surface. In addition, electrical conductivity measurements demonstrate conductivities one order of magnitude lower for graphene drop-cast films (where excess dispersants are present) than for vacuum filtered films, confirming poor inter-sheet connectivity when excess dispersants are present.


Chemosphere | 2016

Determination of uptake, accumulation, and stress effects in corn (Zea mays L.) grown in single-wall carbon nanotube contaminated soil

Amanda Cano; Kristina Kohl; Sabrina Deleon; Paxton Payton; Fahmida Irin; Mohammad A. Saed; Smit A. Shah; Micah J. Green; Jaclyn E. Cañas-Carrell

Single-wall carbon nanotubes (SWNTs) are projected to increase in usage across many industries. Two studies were conducted using Zea L. (corn) seeds exposed to SWNT spiked soil for 40 d. In Study 1, corn was exposed to various SWNT concentrations (0, 10, and 100 mg/kg) with different functionalities (non-functionalized, OH-functionalized, or surfactant stabilized). A microwave induced heating method was used to determine SWNTs accumulated mostly in roots (0-24 μg/g), with minimal accumulation in stems and leaves (2-10 μg/g) with a limit of detection at 0.1 μg/g. Uptake was not functional group dependent. In Study 2, corn was exposed to 10 mg/kg SWNTs (non-functionalized or COOH-functionalized) under optimally grown or water deficit conditions. Plant physiological stress was determined by the measurement of photosynthetic rate throughout Study 2. No significant differences were seen between control and SWNT treatments. Considering the amount of SWNTs accumulated in corn roots, further studies are needed to address the potential for SWNTs to enter root crop species (i.e., carrots), which could present a significant pathway for human dietary exposure.


Journal of Colloid and Interface Science | 2016

Photodegradation of dispersants in colloidal suspensions of pristine graphene.

Matthew J. Hansen; Kyler S. Rountree; Fahmida Irin; Charles B. Sweeney; Christopher D. Klaassen; Micah J. Green

We demonstrate that UV degradation can remove polymeric dispersants from the surface of colloidal pristine graphene. In particular, we investigated the irradiation of polyvinylpyrrolidone (PVP)-dispersed graphene in water; this polymer has been established as a versatile nanosheet dispersant for a range of solvents, and it undergoes photo-oxidative degradation when exposed to UV light. We find that the molecular weight of PVP decreases with irradiation time and subsequently desorbs from the graphene surface. This causes gradual destabilization of graphene and agglomeration in water. The amount of adsorbed PVP decreases by approximately 45% after 4 h of irradiation in comparison with the non-irradiated dispersion. At this point, the majority of the stable graphene nanosheets flocculate, likely because of insufficient surface coverage as indicated by thermogravimetric analysis. Graphene aggregates were characterized as a function of irradiation time by optical microscopy, UV-vis spectroscopy, Raman spectroscopy, and conductivity measurements; the data suggest that the agglomerates maintain a graphene-like (rather than graphite-like) structure. The effect is also observed for another graphene dispersant (sapogenin), which suggests that our findings can be generalized to the broader class of photodegradable dispersants.


Journal of Electromagnetic Waves and Applications | 2013

Non-destructive technique for broadband characterization of carbon nanotubes at microwave frequencies

Subash Vegesna; Fahmida Irin; Micah J. Green; Mohammad A. Saed

This paper presents a broadband microwave non-destructive technique for characterization of carbon nanotubes (CNTs). Typically, commercially available carbon nanotubes are powder-like samples and, therefore, in this paper, a broadband characterization technique to extract electrical conductivity of powder materials is developed. The technique uses a microstrip line configuration in conjunction with a cavity resonator technique. The electrical conductivity of CNTs is extracted from the measured attenuation in the signal response (|S 21|dB) for the microstrip configuration with a signal trace made of copper and a ground plane filled with CNT samples. A resonant cylindrical cavity is also used in the measurement process to help determine a correction factor for the surface roughness of the CNT microstrip ground plane. A novel method to take attenuation due to surface roughness into account to determine conductivity of CNTs is introduced. Experimental and numerical verification of the proposed method is provided. The method developed in this work provides a cost-effective solution where significant amount of time and cost are reduced in the sample preparation process. Measurement results for the electrical conductivity of single-walled CNTs and multi-walled CNTs are presented.


ACS Applied Materials & Interfaces | 2017

Multiwalled Carbon Nanotubes Dramatically Affect the Fruit Metabolome of Exposed Tomato Plants

Diamond McGehee; Mohamed H. Lahiani; Fahmida Irin; Micah J. Green; Mariya V. Khodakovskaya

Here, we reported that multiwalled carbon nanotubes (MWCNT) added to hydroponics system can enhance fruit production of exposed tomato plants. We quantified the exact amount of MWCNT accumulated inside of fruits collected by MWCNT-exposed plants using an advanced microwave induced heating technique (MIH). We found that absorption of MWCNT by tomato fruits significantly affected total fruit metabolome as was confirmed by LC-MS. Our data highlight the importance of comprehensive toxicological risk assessment of plants contaminated with carbon nanomaterials.

Collaboration


Dive into the Fahmida Irin's collaboration.

Top Co-Authors

Avatar

Sriya Das

Texas Tech University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge