Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fahong Yu is active.

Publication


Featured researches published by Fahong Yu.


Nature | 2014

The ctenophore genome and the evolutionary origins of neural systems

Leonid L. Moroz; Kevin M. Kocot; Mathew R. Citarella; Sohn Dosung; Tigran P. Norekian; Inna S. Povolotskaya; Anastasia P. Grigorenko; Christopher A. Dailey; Eugene Berezikov; Katherine M. Buckley; Andrey Ptitsyn; Denis Reshetov; Krishanu Mukherjee; Tatiana P. Moroz; Yelena Bobkova; Fahong Yu; Vladimir V. Kapitonov; Jerzy Jurka; Yuri V. Bobkov; Joshua J. Swore; David Orion Girardo; Alexander Fodor; Fedor Gusev; Rachel Sanford; Rebecca Bruders; Ellen L. W. Kittler; Claudia E. Mills; Jonathan P. Rast; Romain Derelle; Victor V. Solovyev

The origins of neural systems remain unresolved. In contrast to other basal metazoans, ctenophores (comb jellies) have both complex nervous and mesoderm-derived muscular systems. These holoplanktonic predators also have sophisticated ciliated locomotion, behaviour and distinct development. Here we present the draft genome of Pleurobrachia bachei, Pacific sea gooseberry, together with ten other ctenophore transcriptomes, and show that they are remarkably distinct from other animal genomes in their content of neurogenic, immune and developmental genes. Our integrative analyses place Ctenophora as the earliest lineage within Metazoa. This hypothesis is supported by comparative analysis of multiple gene families, including the apparent absence of HOX genes, canonical microRNA machinery, and reduced immune complement in ctenophores. Although two distinct nervous systems are well recognized in ctenophores, many bilaterian neuron-specific genes and genes of ‘classical’ neurotransmitter pathways either are absent or, if present, are not expressed in neurons. Our metabolomic and physiological data are consistent with the hypothesis that ctenophore neural systems, and possibly muscle specification, evolved independently from those in other animals.


Nucleic Acids Research | 2009

ESPRIT: estimating species richness using large collections of 16S rRNA pyrosequences

Yijun Sun; Yunpeng Cai; Li Liu; Fahong Yu; Michael L. Farrell; William McKendree; William G. Farmerie

Recent metagenomics studies of environmental samples suggested that microbial communities are much more diverse than previously reported, and deep sequencing will significantly increase the estimate of total species diversity. Massively parallel pyrosequencing technology enables ultra-deep sequencing of complex microbial populations rapidly and inexpensively. However, computational methods for analyzing large collections of 16S ribosomal sequences are limited. We proposed a new algorithm, referred to as ESPRIT, which addresses several computational issues with prior methods. We developed two versions of ESPRIT, one for personal computers (PCs) and one for computer clusters (CCs). The PC version is used for small- and medium-scale data sets and can process several tens of thousands of sequences within a few minutes, while the CC version is for large-scale problems and is able to analyze several hundreds of thousands of reads within one day. Large-scale experiments are presented that clearly demonstrate the effectiveness of the newly proposed algorithm. The source code and user guide are freely available at http://www.biotech.ufl.edu/people/sun/esprit.html.


Cell | 2006

Neuronal Transcriptome of Aplysia: Neuronal Compartments and Circuitry

Leonid L. Moroz; John R. Edwards; Sathyanarayanan V. Puthanveettil; Andrea B. Kohn; Thomas Ha; Andreas Heyland; Bjarne Knudsen; Anuj Sahni; Fahong Yu; Li Liu; Sami Jezzini; Peter Lovell; William Iannucculli; Minchen Chen; Tuan Nguyen; Huitao Sheng; Regina Shaw; Sergey Kalachikov; Yuri V. Panchin; William G. Farmerie; James J. Russo; Jingyue Ju; Eric R. Kandel

Molecular analyses of Aplysia, a well-established model organism for cellular and systems neural science, have been seriously handicapped by a lack of adequate genomic information. By sequencing cDNA libraries from the central nervous system (CNS), we have identified over 175,000 expressed sequence tags (ESTs), of which 19,814 are unique neuronal gene products and represent 50%-70% of the total Aplysia neuronal transcriptome. We have characterized the transcriptome at three levels: (1) the central nervous system, (2) the elementary components of a simple behavior: the gill-withdrawal reflex-by analyzing sensory, motor, and serotonergic modulatory neurons, and (3) processes of individual neurons. In addition to increasing the amount of available gene sequences of Aplysia by two orders of magnitude, this collection represents the largest database available for any member of the Lophotrochozoa and therefore provides additional insights into evolutionary strategies used by this highly successful diversified lineage, one of the three proposed superclades of bilateral animals.


Proceedings of the National Academy of Sciences of the United States of America | 2014

In vitro selection with artificial expanded genetic information systems

Kwame Sefah; Zunyi Yang; Kevin M. Bradley; Shuichi Hoshika; Elizabeth Jiménez; Liqin Zhang; Guizhi Zhu; Savita Shanker; Fahong Yu; Diane Turek; Weihong Tan; Steven A. Benner

Significance Many chemicals are valuable because they bind to other molecules. Chemical theory cannot directly design “binders.” However, we might recreate in the laboratory the Darwinian processes that nature uses to create binders. This in vitro evolution uses nucleic acids as binders, libraries of DNA/RNA to survive a selection challenge before they can have “children” (systematic evolution of ligands by exponential enrichment, SELEX). Unfortunately, with only four nucleotides, natural DNA/RNA often yields only poor binders, perhaps because they are built from only four building blocks. Synthetic biology has increased the number of DNA/RNA building blocks, with tools to sequence, PCR amplify, and clone artificially expanded genetic information systems (AEGISs). We report here the first example of a SELEX using AEGIS, producing a molecule that binds to cancer cells. Artificially expanded genetic information systems (AEGISs) are unnatural forms of DNA that increase the number of independently replicating nucleotide building blocks. To do this, AEGIS pairs are joined by different arrangements of hydrogen bond donor and acceptor groups, all while retaining their Watson–Crick geometries. We report here a unique case where AEGIS DNA has been used to execute a systematic evolution of ligands by exponential enrichment (SELEX) experiment. This AEGIS–SELEX was designed to create AEGIS oligonucleotides that bind to a line of breast cancer cells. AEGIS–SELEX delivered an AEGIS aptamer (ZAP-2012) built from six different kinds of nucleotides (the standard G, A, C, and T, and the AEGIS nonstandard P and Z nucleotides, the last having a nitro functionality not found in standard DNA). ZAP-2012 has a dissociation constant of 30 nM against these cells. The affinity is diminished or lost when Z or P (or both) is replaced by standard nucleotides and compares well with affinities of standard GACT aptamers selected against cell lines using standard SELEX. The success of AEGIS–SELEX relies on various innovations, including (i) the ability to synthesize GACTZP libraries, (ii) polymerases that PCR amplify GACTZP DNA with little loss of the AEGIS nonstandard nucleotides, and (iii) technologies to deep sequence GACTZP DNA survivors. These results take the next step toward expanding the power and utility of SELEX and offer an AEGIS–SELEX that could possibly generate receptors, ligands, and catalysts having sequence diversities nearer to that displayed by proteins.


Plant Physiology | 2009

A Rice Kinase-Protein Interaction Map

Xiaodong Ding; Todd Richter; Mei Chen; Hiroaki Fujii; Young Su Seo; Mingtang Xie; Xianwu Zheng; Siddhartha Kanrar; Rebecca A. Stevenson; Christopher Dardick; Ying Li; Hao Jiang; Yan Zhang; Fahong Yu; Laura E. Bartley; Mawsheng Chern; Rebecca Bart; Xiuhua Chen; Lihuang Zhu; William G. Farmerie; Michael Gribskov; Jian-Kang Zhu; Michael E. Fromm; Pamela C. Ronald; Wen-Yuan Song

Plants uniquely contain large numbers of protein kinases, and for the vast majority of the 1,429 kinases predicted in the rice (Oryza sativa) genome, little is known of their functions. Genetic approaches often fail to produce observable phenotypes; thus, new strategies are needed to delineate kinase function. We previously developed a cost-effective high-throughput yeast two-hybrid system. Using this system, we have generated a protein interaction map of 116 representative rice kinases and 254 of their interacting proteins. Overall, the resulting interaction map supports a large number of known or predicted kinase-protein interactions from both plants and animals and reveals many new functional insights. Notably, we found a potential widespread role for E3 ubiquitin ligases in pathogen defense signaling mediated by receptor-like kinases, particularly by the kinases that may have evolved from recently expanded kinase subfamilies in rice. We anticipate that the data provided here will serve as a foundation for targeted functional studies in rice and other plants. The application of yeast two-hybrid and TAPtag analyses for large-scale plant protein interaction studies is also discussed.


The Plant Cell | 2013

The Arabidopsis Elongator Complex Subunit2 Epigenetically Regulates Plant Immune Responses

Yongsheng Wang; Chuanfu An; Xudong Zhang; Jiqiang Yao; Yanping Zhang; Yijun Sun; Fahong Yu; David Moraga Amador; Zhonglin Mou

This work identifies a role for the Arabidopsis Elongator complex subunit ELP2 in somatic DNA demethylation/methylation and suggests that ELP2-mediated epigenetic regulation plays a vital function in plant immune responses. The Arabidopsis thaliana Elongator complex subunit2 (ELP2) genetically interacts with NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1), a key transcription coactivator of plant immunity, and regulates the induction kinetics of defense genes. However, the mechanistic relationship between ELP2 and NPR1 and how ELP2 regulates the kinetics of defense gene induction are unclear. Here, we demonstrate that ELP2 is an epigenetic regulator required for pathogen-induced rapid transcriptome reprogramming. We show that ELP2 functions in a transcriptional feed-forward loop regulating both NPR1 and its target genes. An elp2 mutation increases the total methylcytosine number, reduces the average methylation levels of methylcytosines, and alters (increases or decreases) methylation levels of specific methylcytosines. Interestingly, infection of plants with the avirulent bacterial pathogen Pseudomonas syringae pv tomato DC3000/avrRpt2 induces biphasic changes in DNA methylation levels of NPR1 and PHYTOALEXIN DEFICIENT4 (PAD4), which encodes another key regulator of plant immunity. These dynamic changes are blocked by the elp2 mutation, which is correlated with delayed induction of NPR1 and PAD4. The elp2 mutation also reduces basal histone acetylation levels in the coding regions of several defense genes. Together, our data demonstrate a new role for Elongator in somatic DNA demethylation/methylation and suggest a function for Elongator-mediated chromatin regulation in pathogen-induced transcriptome reprogramming.


Journal of Bacteriology | 2011

Comparative Genomic Analysis of Xanthomonas axonopodis pv. citrumelo F1, Which Causes Citrus Bacterial Spot Disease, and Related Strains Provides Insights into Virulence and Host Specificity

Neha Jalan; Valente Aritua; Dibyendu Kumar; Fahong Yu; Jeffrey B. Jones; James H. Graham; João C. Setubal; Nian Wang

Xanthomonas axonopodis pv. citrumelo is a citrus pathogen causing citrus bacterial spot disease that is geographically restricted within the state of Florida. Illumina, 454 sequencing, and optical mapping were used to obtain a complete genome sequence of X. axonopodis pv. citrumelo strain F1, 4.9 Mb in size. The strain lacks plasmids, in contrast to other citrus Xanthomonas pathogens. Phylogenetic analysis revealed that this pathogen is very close to the tomato bacterial spot pathogen X. campestris pv. vesicatoria 85-10, with a completely different host range. We also compared X. axonopodis pv. citrumelo to the genome of citrus canker pathogen X. axonopodis pv. citri 306. Comparative genomic analysis showed differences in several gene clusters, like those for type III effectors, the type IV secretion system, lipopolysaccharide synthesis, and others. In addition to pthA, effectors such as xopE3, xopAI, and hrpW were absent from X. axonopodis pv. citrumelo while present in X. axonopodis pv. citri. These effectors might be responsible for survival and the low virulence of this pathogen on citrus compared to that of X. axonopodis pv. citri. We also identified unique effectors in X. axonopodis pv. citrumelo that may be related to the different host range as compared to that of X. axonopodis pv. citri. X. axonopodis pv. citrumelo also lacks various genes, such as syrE1, syrE2, and RTX toxin family genes, which were present in X. axonopodis pv. citri. These may be associated with the distinct virulences of X. axonopodis pv. citrumelo and X. axonopodis pv. citri. Comparison of the complete genome sequence of X. axonopodis pv. citrumelo to those of X. axonopodis pv. citri and X. campestris pv. vesicatoria provides valuable insights into the mechanism of bacterial virulence and host specificity.


BMC Developmental Biology | 2012

Global gene expression of the inner cell mass and trophectoderm of the bovine blastocyst

Manabu Ozawa; Miki Sakatani; JiQiang Yao; Savita Shanker; Fahong Yu; Rui Yamashita; Shunichi Wakabayashi; Kenta Nakai; Kyle B. Dobbs; M. J. Sudano; William G. Farmerie; P. J. Hansen

BackgroundThe first distinct differentiation event in mammals occurs at the blastocyst stage when totipotent blastomeres differentiate into either pluripotent inner cell mass (ICM) or multipotent trophectoderm (TE). Here we determined, for the first time, global gene expression patterns in the ICM and TE isolated from bovine blastocysts. The ICM and TE were isolated from blastocysts harvested at day 8 after insemination by magnetic activated cell sorting, and cDNA sequenced using the SOLiD 4.0 system.ResultsA total of 870 genes were differentially expressed between ICM and TE. Several genes characteristic of ICM (for example, NANOG, SOX2, and STAT3) and TE (ELF5, GATA3, and KRT18) in mouse and human showed similar patterns in bovine. Other genes, however, showed differences in expression between ICM and TE that deviates from the expected based on mouse and human.ConclusionAnalysis of gene expression indicated that differentiation of blastomeres of the morula-stage embryo into the ICM and TE of the blastocyst is accompanied by differences between the two cell lineages in expression of genes controlling metabolic processes, endocytosis, hatching from the zona pellucida, paracrine and endocrine signaling with the mother, and genes supporting the changes in cellular architecture, stemness, and hematopoiesis necessary for development of the trophoblast.


BMC Genomics | 2013

Comparative genomic and transcriptome analyses of pathotypes of Xanthomonas citri subsp. citri provide insights into mechanisms of bacterial virulence and host range

Neha Jalan; Dibyendu Kumar; Maxuel O. Andrade; Fahong Yu; Jeffrey B. Jones; James H. Graham; Frank F. White; João C. Setubal; Nian Wang

BackgroundCitrus bacterial canker is a disease that has severe economic impact on citrus industries worldwide and is caused by a few species and pathotypes of Xanthomonas. X. citri subsp. citri strain 306 (XccA306) is a type A (Asiatic) strain with a wide host range, whereas its variant X. citri subsp. citri strain Aw12879 (Xcaw12879, Wellington strain) is restricted to Mexican lime.ResultsTo characterize the mechanism for the differences in host range of XccA and Xcaw, the genome of Xcaw12879 that was completed recently was compared with XccA306 genome. Effectors xopAF and avrGf1 are present in Xcaw12879, but were absent in XccA306. AvrGf1 was shown previously for Xcaw to cause hypersensitive response in Duncan grapefruit. Mutation analysis of xopAF indicates that the gene contributes to Xcaw growth in Mexican lime but does not contribute to the limited host range of Xcaw. RNA-Seq analysis was conducted to compare the expression profiles of Xcaw12879 and XccA306 in Nutrient Broth (NB) medium and XVM2 medium, which induces hrp gene expression. Two hundred ninety two and 281 genes showed differential expression in XVM2 compared to in NB for XccA306 and Xcaw12879, respectively. Twenty-five type 3 secretion system genes were up-regulated in XVM2 for both XccA and Xcaw. Among the 4,370 common genes of Xcaw12879 compared to XccA306, 603 genes in NB and 450 genes in XVM2 conditions were differentially regulated. Xcaw12879 showed higher protease activity than XccA306 whereas Xcaw12879 showed lower pectate lyase activity in comparison to XccA306.ConclusionsComparative genomic analysis of XccA306 and Xcaw12879 identified strain specific genes. Our study indicated that AvrGf1 contributes to the host range limitation of Xcaw12879 whereas XopAF contributes to virulence. Transcriptome analyses of XccA306 and Xcaw12879 presented insights into the expression of the two closely related strains of X. citri subsp. citri. Virulence genes including genes encoding T3SS components and effectors are induced in XVM2 medium. Numerous genes with differential expression in Xcaw12879 and XccA306 were identified. This study provided the foundation to further characterize the mechanisms for virulence and host range of pathotypes of X. citri subsp. citri.


Nucleic Acids Research | 2010

Advanced computational algorithms for microbial community analysis using massive 16S rRNA sequence data

Yijun Sun; Yunpeng Cai; Volker Mai; William G. Farmerie; Fahong Yu; Jian-Yong Li; Steve Goodison

With the aid of next-generation sequencing technology, researchers can now obtain millions of microbial signature sequences for diverse applications ranging from human epidemiological studies to global ocean surveys. The development of advanced computational strategies to maximally extract pertinent information from massive nucleotide data has become a major focus of the bioinformatics community. Here, we describe a novel analytical strategy including discriminant and topology analyses that enables researchers to deeply investigate the hidden world of microbial communities, far beyond basic microbial diversity estimation. We demonstrate the utility of our approach through a computational study performed on a previously published massive human gut 16S rRNA data set. The application of discriminant and topology analyses enabled us to derive quantitative disease-associated microbial signatures and describe microbial community structure in far more detail than previously achievable. Our approach provides rigorous statistical tools for sequence-based studies aimed at elucidating associations between known or unknown organisms and a variety of physiological or environmental conditions.

Collaboration


Dive into the Fahong Yu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yijun Sun

University at Buffalo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Liu

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Shunqing Lu

Kunming Institute of Zoology

View shared research outputs
Researchain Logo
Decentralizing Knowledge