Fahri Saatcioglu
University of Oslo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fahri Saatcioglu.
Journal of Biological Chemistry | 2001
Tadashi Matsuda; Tetsuya Yamamoto; Atsushi Muraguchi; Fahri Saatcioglu
Transforming growth factor-β (TGF-β) plays central roles in embryonic development, organogenesis, and physiologic connective tissue remodeling during wound healing and tissue repair as well as in carcinogenesis. Estrogens have key roles in a variety of biological events, such as the development and maintenance of female reproductive organs and bone and lipid metabolism. Previous studies demonstrated that estrogens suppress TGF-β-induced gene expression, such as type IV collagen in kidney mesangial cells. However, the molecular mechanisms that mediate this antagonistic effect are unknown. To elucidate the mechanisms of cross-talk between TGF-β and estrogen receptor (ER) signaling pathways, we reconstituted TGF-β and ER signaling in human kidney carcinoma cells. Here we demonstrate that TGF-β-induced activation of Sma and MAD-related protein 3 (Smad3) activity, one of the major intracellular transducers of TGF-β signaling, was suppressed by ER, whereas ER-mediated transcriptional activation was enhanced by TGF-β signaling. We provide evidence that this two-way cross-talk between the estrogen and TGF-β signaling pathways was the result of direct physical interactions between Smad3 and ER. These findings have implications for a variety of disease states, such as the pathophysiology of kidney function, atherosclerosis, and breast cancer.
Journal of Biological Chemistry | 1998
Katrine Frønsdal; Nikolai Engedal; Thomas Slagsvold; Fahri Saatcioglu
Androgens are critical in the development and maintenance of the male reproductive system and important in the progression of prostate cancer. The effects of androgens are mediated through the androgen receptor (AR), which is a ligand-modulated transcription factor that belongs to the nuclear receptor superfamily. In addition to its ability to activate transcription from androgen response elements, AR can inhibit activator protein-1 (AP-1) activity, composed of Jun and Fos oncoproteins, in a ligand-dependent manner. Conversely, when activated, AP-1 can block AR activity. We found that CREB (cAMP response element-binding protein) binding protein (CBP) had a direct role in both of these activities of AR. CBP significantly increased the ability of endogenous AR in LNCaP cells to activate transcription from an AR-dependent reporter construct. On the other hand, repression of AR activity by treatment of LNCaP cells with an activator of AP-1 was largely relieved when CBP was ectopically expressed. AR and CBP can physically interact in vitro as was shown in glutathione S-transferase pulldown assays. Whereas both the N terminus and ligand-binding domain of AR can interact with CBP, a short region in the N terminus of CBP is required for these interactions. As opposed to the interaction of CBP with other nuclear receptors studied so far, CBP-AR interactions were not affected by ligand binding to AR in vitro. These data suggest that CBP is a coactivator for AR in vivo and that the transcriptional interference between AR and AP-1 is the result of competition for limiting amounts of CBP in the cell.
Cell | 2007
Kathryn E. Wellen; Raquel Fucho; Margaret F. Gregor; Masato Furuhashi; Carlos Morgan; Torstein Lindstad; Eric Vaillancourt; Cem Z. Görgün; Fahri Saatcioglu; Gökhan S. Hotamisligil
Metabolic and inflammatory pathways crosstalk at many levels, and, while required for homeostasis, interaction between these pathways can also lead to metabolic dysregulation under conditions of chronic stress. Thus, we hypothesized that mechanisms might exist to prevent overt inflammatory responses during physiological fluctuations in nutrients or under nutrient-rich conditions, and we identified the six-transmembrane protein STAMP2 as a critical modulator of this integrated response system of inflammation and metabolism in adipocytes. Lack of STAMP2 in adipocytes results in aberrant inflammatory responses to both nutrients and acute inflammatory stimuli. Similarly, in whole animals, visceral adipose tissue of STAMP2(-/-) mice exhibits overt inflammation, and these mice develop spontaneous metabolic disease on a regular diet, manifesting insulin resistance, glucose intolerance, mild hyperglycemia, dyslipidemia, and fatty liver disease. We conclude that STAMP2 participates in integrating inflammatory and metabolic responses and thus plays a key role in systemic metabolic homeostasis.
Molecular and Cellular Biology | 2007
Tove Irene Klokk; Piotr Kurys; Cem Elbi; Akhilesh K. Nagaich; Anindya Hendarwanto; Thomas Slagsvold; Ching-Yi Chang; Gordon L. Hager; Fahri Saatcioglu
ABSTRACT Androgens have key roles in normal physiology and in male sexual differentiation as well as in pathological conditions such as prostate cancer. Androgens act through the androgen receptor (AR), which is a ligand-modulated transcription factor. Antiandrogens block AR function and are widely used in disease states, but little is known about their mechanism of action in vivo. Here, we describe a rapid differential interaction of AR with target genomic sites in living cells in the presence of agonists which coincides with the recruitment of BRM ATPase complex and chromatin remodeling, resulting in transcriptional activation. In contrast, the interaction of antagonist-bound or mutant AR with its target was found to be kinetically different: it was dramatically faster, occurred without chromatin remodeling, and resulted in the lack of transcriptional inhibition. Fluorescent resonance energy transfer analysis of wild-type AR and a transcriptionally compromised mutant at the hormone response element showed that intramolecular interactions between the N and C termini of AR play a key functional role in vivo compared to intermolecular interactions between two neighboring ARs. These data provide a kinetic and mechanistic basis for regulation of gene expression by androgens and antiandrogens in living cells.
Cancer Research | 2004
Zhijun Xi; Tove Irene Klokk; Kemal Sami Korkmaz; Piotr Kurys; Cem Elbi; Björn Risberg; Håvard E. Danielsen; Massimo Loda; Fahri Saatcioglu
Kallikreins (KLKs) are highly conserved serine proteases that play key roles in a variety of physiological and pathological processes. KLKs are secreted proteins that have extracellular substrates and function. For example, prostate-specific antigen (or KLK3) is a secreted protein that is widely used as a diagnostic marker for prostate cancer. KLK4 is a recently identified member of the kallikrein family that is regulated by androgens and is highly specific to prostate for expression. Here, we show that the gene product of KLK4, hK4, is the first member of the KLK family that is intracellularly localized. We provide strong evidence that the previously assigned first exon that was predicted to code for a signal peptide that would target hK4 for secretion is not part of the physiologically relevant form of KLK4 mRNA. In addition to detailed mapping of the KLK4 mRNA 5′ end by RT-PCR, this conclusion is supported by predominantly nuclear localization of the hK4 protein in the cell, documented by both immunofluorescence and cell fractionation experiments. Furthermore, in addition to androgens, hK4 expression is regulated by estrogen and progesterone in prostate cancer cells. Finally, in situ hybridization on normal and hyperplastic prostate samples in tissue microarrays indicate that KLK4 is predominantly expressed in the basal cells of the normal prostate gland and overexpressed in prostate cancer. These data suggest that KLK4 has a unique structure and function compared with other members of the KLK family and may have a role in the biology and characterization of prostate cancer.
Oncogene | 2005
Ceren G. Korkmaz; Kemal Sami Korkmaz; Piotr Kurys; Cem Elbi; Ling Wang; Tove Irene Klokk; Clara Hammarstrom; Gunhild Trøen; Aud Svindland; Gordon L. Hager; Fahri Saatcioglu
We have identified a novel gene, six transmembrane protein of prostate 2 (STAMP2), named for its high sequence similarity to the recently identified STAMP1 gene. STAMP2 displays a tissue-restricted expression with highest expression levels in placenta, lung, heart, and prostate and is predicted to code for a 459-amino acid six transmembrane protein. Using a form of STAMP2 labeled with green flourescent protein (GFP) in quantitative time-lapse and immunofluorescence confocal microscopy, we show that STAMP2 is primarily localized to the Golgi complex, trans-Golgi network, and the plasma membrane. STAMP2 also localizes to vesicular-tubular structures in the cytosol and colocalizes with the Early Endosome Antigen1 (EEA1) suggesting that it may be involved in the secretory/endocytic pathways. STAMP2 expression is exquisitely androgen regulated in the androgen-sensitive, androgen receptor-positive prostate cancer cell line LNCaP, but not in androgen receptor-negative prostate cancer cell lines PC-3 and DU145. Analysis of STAMP2 expression in matched normal and tumor samples microdissected from prostate cancer specimens indicates that STAMP2 is overexpressed in prostate cancer cells compared with normal prostate epithelial cells. Furthermore, ectopic expression of STAMP2 in prostate cancer cells significantly increases cell growth and colony formation suggesting that STAMP2 may have a role in cell proliferation. Taken together, these data suggest that STAMP2 may contribute to the normal biology of the prostate cell, as well as prostate cancer progression.
FEBS Letters | 2000
Tetsuya Yamamoto; Tadashi Matsuda; Akira Junicho; Hiroyuki Kishi; Fahri Saatcioglu; Atsushi Muraguchi
Interleukin‐6 (IL‐6) is a multifunctional cytokine that plays important roles in the immune system, hematopoiesis, and acute phase reactions. Estrogens have significant roles in a variety of biological events, such as the development and maintenance of female reproductive organs, and bone and lipid metabolism. Previous studies demonstrated that estrogens suppress IL‐6‐induced osteoporosis and the growth of multiple myeloma cells by repressing IL‐6 and IL‐6 receptor gene expression. Here we present a novel mechanism for the inhibitory effect of estrogens on IL‐6 function. IL‐6‐induced activation of signal transducer and activator of transcription 3 (STAT3) activity and STAT3‐mediated gene expression were suppressed by 17β‐estradiol (E2) in breast cancer cells. E2‐mediated inhibition of STAT3 activation was reversed by tamoxifen, an estrogen receptor (ER) antagonist. We provide evidence that the inhibitory action of ER on STAT3 activity was due to direct physical interactions between STAT3 and ER which represents a novel form of cross‐talk between STAT3 and ER signaling pathways.
BMC Complementary and Alternative Medicine | 2007
Anette Kjellgren; Sven Åke Bood; Kajsa Axelsson; Torsten Norlander; Fahri Saatcioglu
BackgroundIncreasing rates of psychosocial disturbances give rise to increased risks and vulnerability for a wide variety of stress-related chronic pain and other illnesses. Relaxation exercises aim at reducing stress and thereby help prevent these unwanted outcomes. One of the widely used relaxation practices is yoga and yogic breathing exercises. One specific form of these exercises is Sudarshan Kriya and related practices (SK&P) which are understood to have favourable effects on the mind-body system. The goal of this pilot study was to design a protocol that can investigate whether SK&P can lead to increased feeling of wellness in healthy volunteers.MethodsParticipants were recruited in a small university city in Sweden and were instructed in a 6-day intensive program of SK&P which they practiced daily for six weeks. The control group was instructed to relax in an armchair each day during the same period. Subjects included a total of 103 adults, 55 in the intervention (SK&P) group and 48 in the control group. Various instruments were administered before and after the intervention. Hospital Anxiety Depression Scale measured the degree of anxiety and depression, Life Orientation Test measured dispositional optimism, Stress and Energy Test measured individuals energy and stress experiences. Experienced Deviation from Normal State measured the experience of altered state of consciousness.ResultsThere were no safety issues. Compliance was high (only 1 dropout in the SK&P group, and 5 in the control group). Outcome measures appeared to be appropriate for assessing the differences between the groups. Subjective reports generally correlated with the findings from the instruments. The data suggest that participants in the SK&P group, but not the control group, lowered their degree of anxiety, depression and stress, and also increased their degree of optimism (ANOVA; p < 0.001). The participants in the yoga group experienced the practices as a positive event that induced beneficial effects.ConclusionThese data indicate that the experimental protocol that is developed here is safe, compliance level is good, and a full scale trial is feasible. The data obtained suggest that adult participants may improve their wellness by learning and applying a program based on yoga and yogic breathing exercises; this can be conclusively assessed in a large-scale trial.Trial RegistrationAustralian Clinical Trial Registry ACTRN012607000175471.
Cancer Research | 2007
Tove Irene Klokk; Anette Kilander; Zhijun Xi; Håkon Wæhre; Björn Risberg; Håvard E. Danielsen; Fahri Saatcioglu
Kallikrein 4 (KLK4) is a member of the human tissue KLK family. Whereas all other KLKs are secreted proteins with extracellular functions, KLK4 is primarily localized to the nucleus, indicating that it has a different function compared with other members of the KLK family. In addition, KLK4 expression is highly enriched in the prostate and is regulated by androgens. Here, we studied the possible functional role of KLK4 in prostate cancer cells and examined its expression at the protein level in prostate cancer specimens. Consistent with its mRNA expression, KLK4 protein is significantly overexpressed in malignant prostate compared with normal prostate. KLK4 expression is predominantly in the nucleus of basal cells in the prostate epithelium in keeping with its distribution in prostate cancer cells in vitro. Furthermore, adenovirus-mediated expression of KLK4 dramatically induces proliferation of prostate cancer cells, at least in part through significant alterations in cell cycle regulatory gene expression. Consistent with these data, small interfering RNA-mediated knockdown of endogenous KLK4 in LNCaP prostate cancer cells inhibits cell growth. These data identify KLK4 as the first member of the KLK family that is a proliferative factor with effects on gene expression and indicate that it may have an important role in prostate cancer development and progression.
Nutrition and Cancer | 2011
Bato Lazarevic; Gro Boezelijn; Lien My Diep; Kristin Kvernrod; Olov Øgren; Håkon Ramberg; Anders Moen; Nicolai Wessel; R. Egil Berg; Wolfgang Egge-Jacobsen; Clara Hammarström; Aud Svindland; Omer Kucuk; Fahri Saatcioglu; Kristin Austlid Taskén; Steinar J. Karlsen
We conducted a placebo-controlled, block-randomized double-blind Phase 2 study to examine the effect of 30 mg synthetic genistein daily on serum and tissue biomarkers in patients with localized prostate cancer (CaP). Fifty-four study subjects were recruited and randomized to treatment with genistein (n = 23) or placebo (n = 24) for 3 to 6 wk prior to prostatectomy. Seven study subjects were noncompliant to the study protocol. Adverse events were few and mild. Serum prostate specific antigen (PSA) decreased by 7.8% in the genistein arm and increased by 4.4% in the placebo arm (P = 0.051). The PSA level was reduced in tumor tissue compared to normal tissue in the placebo arm. In the genistein arm, the PSA level in tumor and normal tissue was comparable. Total cholesterol was significantly lower in the genistein arm (P = 0.013). There were no significant effects on thyroid or sex hormones. Plasma concentrations of total genistein were on average 100-fold higher in the genistein arm after treatment (P < 0.001). Genistein at a dose that can be easily obtained from a diet rich in soy reduced the level of serum PSA in patients with localized CaP, without any effects on hormones. It was well tolerated and had a beneficial effect on blood cholesterol.