Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Faisal M. Abou-Tarboush is active.

Publication


Featured researches published by Faisal M. Abou-Tarboush.


Toxicology in Vitro | 2012

Titanium dioxide nanoparticles induced cytotoxicity, oxidative stress and DNA damage in human amnion epithelial (WISH) cells

Quaiser Saquib; Abdulaziz A. Al-Khedhairy; Maqsood A. Siddiqui; Faisal M. Abou-Tarboush; Ameer Azam; Javed Musarrat

Titanium dioxide nanoparticles (TiO(2)-NPs) induced cytotoxicity and DNA damage have been investigated using human amnion epithelial (WISH) cells, as an in vitro model for nanotoxicity assessment. Crystalline, polyhedral rutile TiO(2)-NPs were synthesized and characterized using X-ray diffraction (XRD), UV-Visible spectroscopy, Fourier transform infra red (FTIR) spectroscopy, and transmission electron microscopic (TEM) analyses. The neutral red uptake (NRU) and [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) assays revealed the concentration dependent cytotoxic effects of TiO(2)-NPs (30.6nm) in concentration range of 0.625-10μg/ml. Cells exposed to TiO(2)-NPs (10μg/ml) exhibited significant reduction (46.3% and 34.6%; p<0.05) in catalase activity and glutathione (GSH) level, respectively. Treated cells showed 1.87-fold increase in intracellular reactive oxygen species (ROS) generation and 7.3% (p<0.01) increase in G(2)/M cell cycle arrest, as compared to the untreated control. TiO(2)-NPs treated cells also demonstrated the formation of DNA double strand breaks with 14.6-fold (p<0.05) increase in Olive tail moment (OTM) value at 20μg/ml concentration, vis-à-vis untreated control, under neutral comet assay conditions. Thus, the reduction in cell viability, morphological alterations, compromised antioxidant system, intracellular ROS production, and significant DNA damage in TiO(2)-NPs exposed cells signify the potential of these NPs to induce cyto- and genotoxicity in cultured WISH cells.


Genetics and Molecular Research | 2014

In vitro cytotoxicity screening of wild plant extracts from Saudi Arabia on human breast adenocarcinoma cells

Mohammad Ajmal Ali; M. Abul Farah; Fahad M.A. Al-Hemaid; Faisal M. Abou-Tarboush

This study investigated the in vitro anticancer activities of a total of 14 wild angiosperms collected in Saudi Arabia. The cytotoxic activity of each extract was assessed against human breast adenocarcinoma (MCF-7) cell lines by using the MTT assay. Among the plants screened, the potential cytotoxic activity exhibited by the extract of Lavandula dentata (Lamiaceae) was identified, and we analyzed its anticancer potential by testing antiproliferative and apoptotic activity. Our results clearly show that ethanolic extract of L. dentata exhibits promising cytotoxic activity with an IC50 value of 39 μg/mL. Analysis of cell morphological changes, DNA fragmentation and apoptosis (using an Annexin V assay) also confirmed the apoptotic effect of L. dentata extract, and thus, our data call for further investigations to determine the active chemical constituent(s) and their mechanisms of inducing apoptosis.


Toxicology International | 2011

Effect of Trans-resveratrol on Rotenone-induced Cytotoxicity in Human Breast Adenocarcinoma Cells.

Maqsood Ahmad Siddiqui; Quaiser Saquib; Maqusood Ahamed; Javed Ahmad; Abdulaziz A. Al-Khedhairy; Faisal M. Abou-Tarboush; Javed Musarrat

Rotenone, a botanical insecticide is known to cause apoptosis in various cell types. Trans-resveratrol, a natural phytophenol present in red grapes and wine, is also well documented for its antioxidant, anti-inflammatory, anti-mutagenic, and anticarcinogenic activities. Therefore, the present investigations were carried out to assess the protective effect of trans-resveratrol against rotenone-induced cell death in human breast adenocarcinoma (MCF-7) cells. MCF-7 cells were exposed with various concentrations of rotenone for 24 h, and the loss in percent cell viability was evaluated by MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide] and neutral red uptake (NRU) assays. A significant decrease in percent cell viability in MCF-7 cells was observed at 50 μM and above concentrations of rotenone, as compared to untreated control. Furthermore, various concentrations (5, 10, and 25 μM) of trans-resveratrol were used to see its protective role on cell viability in rotenone-induced cell death in MCF-7 cells. Pre- or post- treatment of trans-resveratrol for 24 h was given to the cells. The data exhibited a significant dose dependent increase in the percent cell viability under pre- and post-treatment conditions. However, post-treatment of trans-resveratrol for 24 h after rotenone exposure to the cells was relatively less effective. Overall, the results suggest that trans-resveratrol significantly protects MCF-7 cells from rotenone-induced cell death. This model can be used as an effective and economical alternative to animal models for screening the antioxidant activity of a variety of natural compounds/drugs.


Genetics and Molecular Research | 2016

Target fishing of glycopentalone using integrated inverse docking and reverse pharmacophore mapping approach

Arun Bahadur Gurung; Mohammad Ajmal Ali; A. Bhattacharjee; Khalid Mashay Al-Anazi; Mohammad Abul Farah; Fahad M.A. Al-Hemaid; Faisal M. Abou-Tarboush; Joongku Lee; S.Y. Kim; F.S.M. Al-Anazi

Glycopentalone isolated from Glycosmis pentaphylla (family Rutaceae) has cytotoxic and apoptosis inducing effects in various human cancer cell lines; however, its mode of action is not known. Therefore, target fishing of glycopentalone using a combined approach of inverse docking and reverse pharmacophore mapping approach was used to identify potential targets of glycopentalone, and gain insight into its binding modes against the selected molecular targets, viz., CDK-2, CDK-6, Topoisomerase I, Bcl-2, VEGFR-2, Telomere:G-quadruplex and Topoisomerase II. These targets were chosen based on their key roles in the progression of cancer via regulation of cell cycle and DNA replication. Molecular docking analysis revealed that glycopentalone displayed binding energies ranging from -6.38 to -8.35 kcal/mol and inhibition constants ranging from 0.758 to 20.90 μM. Further, the binding affinities of glycopentalone to the targets were in the order: Telomere:G-quadruplex > VEGFR-2 > CDK-6 > CDK-2 > Topoisomerase II > Topoisomerase I > Bcl-2. Binding mode analysis revealed critical hydrogen bonds as well as hydrophobic interactions with the targets. The targets were validated by reverse pharmacophore mapping of glycopentalone against a set of 2241 known human target proteins which revealed CDK-2 and VEGFR-2 as the most favorable targets. The glycopentalone was well mapped to CDK-2 and VEGFR-2 which involve six pharmacophore features (two hydrophobic centers and four hydrogen bond acceptors) and nine pharmacophore features (five hydrophobic, two hydrogen bond acceptors and two hydrogen bond donors), respectively. The present computational approach may aid in rational identification of targets for small molecules against large set of candidate macromolecules before bioassays validation.


Drug and Chemical Toxicology | 2018

Gemcitabine induced cytotoxicity, DNA damage and hepatic injury in laboratory mice

Waleed A.Q. Hailan; Faisal M. Abou-Tarboush; Khalid Mashay Al-Anazi; Areeba Ahmad; Ahmed Qasem; Mohammad Abul Farah

Abstract The present study was conducted to demonstrate cytotoxicity, apoptosis and hepatic damage induced by gemcitabine in laboratory mice. Animals were treated with a single dose of gemcitabine (415 mg/kg body wt), equivalent to a human therapeutic dose, and sacrificed after 1, 2 and 3 weeks. A significant decrease in mean body weight and absolute liver weight was registered. The levels of alkaline phosphatase (ALP), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were increased as a result of this induced stress. Various structural changes were observed in the liver tissue of treated mice, as evident in the histological sections. Specifically, gemcitabine exposure was able to induce apoptosis in liver cells, and the incidence of TUNEL positive liver cells was increased compared to the control group. DNA fragmentation appeared on agarose gel and flow cytometry analysis confirmed the induction of apoptosis. These findings in gemcitabine-treated animal tissues suggest that inhibition or disruption of cells’ DNA synthesis may be the mechanism by which this drug induces toxicity in the animal body.


Saudi Journal of Biological Sciences | 2016

Development of spermatic granuloma in albino rats following administration of water extract of Heliotropium bacciferum Forssk.

Khalid Mashay Al-Anazi; Bassam A. Alahmadi; Ahmed R. Al-Himaidi; Faisal M. Abou-Tarboush; Mohammad Abul Farah; Ahmed H. Mahmoud; Mohamed Alfaifi

A spermatic granuloma is a chronic inflammatory reaction produced in response to extravasated sperm within the intertubular connective tissue. The present study investigates the possible toxic effects of water extract of Heliotropium bacciferum on the reproductive system of male albino rats and the associated potential for the development of spermatic granulomas. H. bacciferum is a herbal plant used in traditional medicine and reported to have cytotoxic effects due to pyrrolizidine alkaloids. Histological examinations revealed no changes in the tissues of the testes, although, some changes were detected in the cauda epididymis, the most important of which was the development of small lesions of spermatic granulomas. Clear gaps were observed between the epithelial linings of the epididymal tubules.


Genetics and Molecular Research | 2016

Molecular docking of the anticancer bioactive compound proceraside with macromolecules involved in the cell cycle and DNA replication.

Arun Bahadur Gurung; Mohammad Ajmal Ali; A. Bhattacharjee; M AbulFarah; Fahad M.A. Al-Hemaid; Faisal M. Abou-Tarboush; Khalid Mashay Al-Anazi; F.S.M. Al-Anazi; Joongku Lee

The bioactive compounds proceraside A, frugoside and calotropin, which were extracted from the root bark of Calotropis procera (Aiton) W.T. Aiton (family Asclepiadaceae), were recently reported to inhibit the growth of inhibition against various human cancer cell lines in vitro. However, their modes of action have not been clearly defined. Therefore, we attempted an in silico approach to gain insights into their binding modes against the following selected molecular targets: CDK-2, CDK-6, topoisomerase I, BCL-2, VEGFR-2, telomere: G-quadruplex, and topoisomerase II. These targets were selected based on their key roles in cancer progression via the regulation of the cell cycle and DNA replication. Molecular-docking analyses revealed that proceraside A was the best docked ligand against all the targets, with the exception of telomere-G: quadruplex. Furthermore, it displayed the lowest binding energies and inhibition constants, and critical hydrogen bonds and hydrophobic interactions with the targets were also revealed. The present study may aid in the identification of possible targets for proceraside A, and might provide a plausible explanation for its proven anti-tumor activities. Moreover, the result of this study may further guide structure-activity relationship studies used to generate more potent target-specific inhibitors.


Saudi Journal of Biological Sciences | 2010

Cytogenetic effects of sildenafil citrate (Viagra) on SWR/J mouse bone marrow cells.

Faisal M. Abou-Tarboush; Mohamed Fathy Abdel-Samad

The present study was conducted to investigate the cytogenetic effects of sildenafil citrate in SWR/J mouse bone marrow cells. Thirty-six males and 36 females were used and divided into four groups. Each group contained 18 animals (9 males and 9 females), weighing 30–35 g. These animals were orally administered with a single dose of 13, 26 or 40 mg/kg sildenafil citrate solution. A control group received normal saline in an identical condition. The animals were sacrificed at 12, 24 or 48 h, after the treatment. Chromosome aberrations were investigated in 50 metaphases per animal. No significant differences in the percentages of mitotic indices or in the frequencies of chromosome aberrations were observed between treated male and female mice at any doses or at any time intervals used, therefore, data from the two sexes were pooled when analyzed statistically. No significant (p < 0.05) differences in the percentages of mitotic indices or in the frequencies of chromosome aberrations were observed between sildenafil citrate-treated groups and the control group at any doses or at any time intervals used. However, the percentages of centromeric adhesions increased significantly (p < 0.01) in treated groups as compared with the control group at all doses and at all time intervals used. In conclusion, the results of the present study suggest that sildenafil citrate does not have cytogenetic effects on mouse bone marrow cells, but the centromeric adhesions induced by this drug need further studies to confirm them and to investigate the possible mechanism(s) responsible for such effect.


Journal of Environmental Biology | 2004

Testicular cellular toxicity of cadmium : transmission electron microscopy examination.

Haffor As; Faisal M. Abou-Tarboush


Gene | 2012

Involvement of p53 in gemcitabine mediated cytotoxicity and radiosensitivity in breast cancer cell lines.

Sameer D. Salem; Faisal M. Abou-Tarboush; Nadeem M. Saeed; Waheeb D. Al-Qadasi; M. Abul Farah; Muneera Al-Buhairi; Najla Al-Harbi; Ibrahim M. Alhazza; Ghazi Alsbeih

Collaboration


Dive into the Faisal M. Abou-Tarboush's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Bhattacharjee

North Eastern Hill University

View shared research outputs
Top Co-Authors

Avatar

Arun Bahadur Gurung

North Eastern Hill University

View shared research outputs
Top Co-Authors

Avatar

Javed Musarrat

Aligarh Muslim University

View shared research outputs
Researchain Logo
Decentralizing Knowledge