Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Falk Melzer is active.

Publication


Featured researches published by Falk Melzer.


International Journal of Systematic and Evolutionary Microbiology | 2008

Brucella microti sp. nov., isolated from the common vole Microtus arvalis

Holger C. Scholz; Zdenek Hubalek; Ivo Sedláček; Gilles Vergnaud; Herbert Tomaso; Sascha Al Dahouk; Falk Melzer; Peter Kämpfer; Heinrich Neubauer; Axel Cloeckaert; Marianne Maquart; Michel S. Zygmunt; Adrian M. Whatmore; Enevold Falsen; Peter Bahn; Cornelia Göllner; Martin Pfeffer; Birgit Huber; Hans-Jürgen Busse; Karsten Nöckler

Two Gram-negative, non-motile, non-spore-forming, coccoid bacteria (strains CCM 4915(T) and CCM 4916), isolated from clinical specimens of the common vole Microtus arvalis during an epizootic in the Czech Republic in 2001, were subjected to a polyphasic taxonomic study. On the basis of 16S rRNA (rrs) and recA gene sequence similarities, both isolates were allocated to the genus Brucella. Affiliation to Brucella was confirmed by DNA-DNA hybridization studies. Both strains reacted equally with Brucella M-monospecific antiserum and were lysed by the bacteriophages Tb, Wb, F1 and F25. Biochemical profiling revealed a high degree of enzyme activity and metabolic capabilities not observed in other Brucella species. The omp2a and omp2b genes of isolates CCM 4915(T) and CCM 4916 were indistinguishable. Whereas omp2a was identical to omp2a of brucellae from certain pinniped marine mammals, omp2b clustered with omp2b of terrestrial brucellae. Analysis of the bp26 gene downstream region identified strains CCM 4915(T) and CCM 4916 as Brucella of terrestrial origin. Both strains harboured five to six copies of the insertion element IS711, displaying a unique banding pattern as determined by Southern blotting. In comparative multilocus VNTR (variable-number tandem-repeat) analysis (MLVA) with 296 different genotypes, the two isolates grouped together, but formed a separate cluster within the genus Brucella. Multilocus sequence typing (MLST) analysis using nine different loci also placed the two isolates separately from other brucellae. In the IS711-based AMOS PCR, a 1900 bp fragment was generated with the Brucella ovis-specific primers, revealing that the insertion element had integrated between a putative membrane protein and cboL, encoding a methyltransferase, an integration site not observed in other brucellae. Isolates CCM 4915(T) and CCM 4916 could be clearly distinguished from all known Brucella species and their biovars by means of both their phenotypic and molecular properties, and therefore represent a novel species within the genus Brucella, for which the name Brucella microti sp. nov. with the type strain CCM 4915(T) (=BCCN 07-01(T)=CAPM 6434(T)) is proposed.


Research in Veterinary Science | 2012

Brucellosis in camels

Mayada Gwida; Adel H. El-Gohary; Falk Melzer; Iahtasham Khan; Uwe Rösler; Heinrich Neubauer

Camels are highly susceptible to brucellosis caused by Brucella melitensis and Brucella abortus. Difficulties can arise in diagnosis of camel brucellosis, especially as this disease provokes only few clinical signs in contrast to its clinical course in cattle. Because none of the commonly used serological test can be perceived as a perfect test for Brucella diagnosis in camel and most serological tests used for camels have been directly transposed from cattle without adequate validation, an incorrect diagnosis may occur when diagnosis is based on serology alone. Of imminent concern is the fact that brucellosis can be easily transmitted from animals or their products to humans mainly via milk. In many developing countries in the arid areas of Asia and Africa, camels are still the most important productive livestock for nomadic populations. Therefore, we reviewed the literatures on camel brucellosis to highlight the epidemiologic, economic and public health impact of camel brucellosis as a basis for designing effective control strategies.


Applied and Environmental Microbiology | 2012

Isolation of Potentially Novel Brucella spp. from Frogs

Tobias Eisenberg; Hans-Peter Hamann; Ute Kaim; Karen Schlez; Helga Seeger; Nicole Schauerte; Falk Melzer; Herbert Tomaso; Holger C. Scholz; Mark S. Koylass; Adrian M. Whatmore; Michael Zschöck

ABSTRACT Bacterial isolates from frogs were phenotypically identified as Ochrobactrum anthropi, but 16S rRNA sequencing showed up to 100% identity with Brucella inopinata. Further analysis of recA, omp2a, omp2b, bcsp31, and IS711 and multilocus sequence analysis (MLSA) verified a close relationship with Brucella, suggesting the isolates may actually represent novel members of this growing genus of zoonotic pathogens.


Applied and Environmental Microbiology | 2012

Raman Spectroscopy as a Potential Tool for Detection of Brucella spp. in Milk

Susann Meisel; Stephan Stöckel; Mandy C. Elschner; Falk Melzer; Petra Rösch; Jürgen Popp

ABSTRACT Detection of Brucella, causing brucellosis, is very challenging, since the applied techniques are mostly time-demanding and not standardized. While the common detection system relies on the cultivation of the bacteria, further classical typing up to the biotype level is mostly based on phenotypic or genotypic characteristics. The results of genotyping do not always fit the existing taxonomy, and misidentifications between genetically closely related genera cannot be avoided. This situation gets even worse, when detection from complex matrices, such as milk, is necessary. For these reasons, the availability of a method that allows early and reliable identification of possible Brucella isolates for both clinical and epidemiological reasons would be extremely useful. We evaluated micro-Raman spectroscopy in combination with chemometric analysis to identify Brucella from agar plates and directly from milk: prior to these studies, the samples were inactivated via formaldehyde treatment to ensure a higher working safety. The single-cell Raman spectra of different Brucella, Escherichia, Ochrobactrum, Pseudomonas, and Yersinia spp. were measured to create two independent databases for detection in media and milk. Identification accuracies of 92% for Brucella from medium and 94% for Brucella from milk were obtained while analyzing the single-cell Raman spectra via support vector machine. Even the identification of the other genera yielded sufficient results, with accuracies of >90%. In summary, micro-Raman spectroscopy is a promising alternative for detecting Brucella. The measurements we performed at the single-cell level thus allow fast identification within a few hours without a demanding process for sample preparation.


BMC Microbiology | 2012

Rapid identification of Burkholderia mallei and Burkholderia pseudomallei by intact cell Matrix-assisted Laser Desorption/Ionisation mass spectrometric typing

Axel Karger; Rüdiger Stock; Mario Ziller; Mandy C. Elschner; Barbara Bettin; Falk Melzer; Thomas Maier; Markus Kostrzewa; Holger C. Scholz; Heinrich Neubauer; Herbert Tomaso

BackgroundBurkholderia (B.) pseudomallei and B. mallei are genetically closely related species. B. pseudomallei causes melioidosis in humans and animals, whereas B. mallei is the causative agent of glanders in equines and rarely also in humans. Both agents have been classified by the CDC as priority category B biological agents. Rapid identification is crucial, because both agents are intrinsically resistant to many antibiotics. Matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-TOF MS) has the potential of rapid and reliable identification of pathogens, but is limited by the availability of a database containing validated reference spectra. The aim of this study was to evaluate the use of MALDI-TOF MS for the rapid and reliable identification and differentiation of B. pseudomallei and B. mallei and to build up a reliable reference database for both organisms.ResultsA collection of ten B. pseudomallei and seventeen B. mallei strains was used to generate a library of reference spectra. Samples of both species could be identified by MALDI-TOF MS, if a dedicated subset of the reference spectra library was used. In comparison with samples representing B. mallei, higher genetic diversity among B. pseudomallei was reflected in the higher average Eucledian distances between the mass spectra and a broader range of identification score values obtained with commercial software for the identification of microorganisms. The type strain of B. pseudomallei (ATCC 23343) was isolated decades ago and is outstanding in the spectrum-based dendrograms probably due to massive methylations as indicated by two intensive series of mass increments of 14 Da specifically and reproducibly found in the spectra of this strain.ConclusionsHandling of pathogens under BSL 3 conditions is dangerous and cumbersome but can be minimized by inactivation of bacteria with ethanol, subsequent protein extraction under BSL 1 conditions and MALDI-TOF MS analysis being faster than nucleic amplification methods. Our spectra demonstrated a higher homogeneity in B. mallei than in B. pseudomallei isolates. As expected for closely related species, the identification process with MALDI Biotyper software (Bruker Daltonik GmbH, Bremen, Germany) requires the careful selection of spectra from reference strains. When a dedicated reference set is used and spectra of high quality are acquired, it is possible to distinguish both species unambiguously. The need for a careful curation of reference spectra databases is stressed.


Molecular and Cellular Probes | 2009

DNA microarray-based detection and identification of Burkholderia mallei, Burkholderia pseudomallei and Burkholderia spp.

Gernot Schmoock; Ralf Ehricht; Falk Melzer; Astrid Rassbach; Holger C. Scholz; Heinrich Neubauer; Konrad Sachse; Rinaldo Aparecido Mota; Muhammad Saqib; Mandy C. Elschner

We developed a rapid oligonucleotide microarray assay based on genetic markers for the accurate identification and differentiation of Burkholderia (B.) mallei and Burkholderia pseudomallei, the agents of glanders and melioidosis, respectively. These two agents were clearly identified using at least 4 independent genetic markers including 16S rRNA gene, fliC, motB and also by novel species-specific target genes, identified by in silico sequence analysis. Specific hybridization signal profiles allowed the detection and differentiation of up to 10 further Burkholderia spp., including the closely related species Burkholderia thailandensis and Burkholderia-like agents, such as Burkholderia cepacia, Burkholderia cenocepacia, Burkholderia vietnamiensis, Burkholderia ambifaria, and Burkholderia gladioli, which are often associated with cystic fibrosis (CF) lung disease. The assay was developed using the easy-to-handle and economical ArrayTube (AT) platform. A representative strain panel comprising 44 B. mallei, 32 B. pseudomallei isolates, and various Burkholderia type strains were examined to validate the test. Assay specificity was determined by examination of 40 non-Burkholderia strains.


Journal of Infection in Developing Countries | 2014

Detection of Brucella melitensis in bovine milk and milk products from apparently healthy animals in Egypt by real-time PCR

Gamal Wareth; Falk Melzer; Mandy C. Elschner; Heinrich Neubauer; Uwe Roesler

INTRODUCTION Brucellosis in Egypt is an endemic disease among animals and humans. In endemic developing countries, dairy products produced from untreated milk are a potential threat to public health. The aim of this study was to detect brucellae in milk and milk products produced from apparently healthy animals to estimate the prevalence of contamination. METHODOLOGY Two hundred and fifteen unpasteurized milk samples were collected from apparently healthy cattle (n = 72) and buffaloes (n = 128) reared on small farms, and from milk shops (n = 15) producing dairy products for human consumption. All milk samples were examined by indirect enzyme-linked immunosorbent assay (iELISA) and real-time PCR (RT-PCR) to detect Brucella antibodies and Brucella-specific DNA, respectively. RESULTS Using iELISA, anti-Brucella antibodies were detected in 34 samples (16%), while RT-PCR amplified Brucella-specific DNA from 17 milk samples (7.9%). Species-specific IS711 RT-PCR identified 16 of the RT-PCR-positive samples as containing B. melitensis DNA; 1 RT-PCR-positive sample was identified as containing B. abortus DNA. CONCLUSIONS The detection of Brucella DNA in milk or milk products sold for human consumption, especially the highly pathogenic species B. melitensis, is of obvious concern. The shedding of Brucella spp. in milk poses an increasing threat to consumers in Egypt. Consumption of dairy products produced from non-pasteurized milk by individual farmers operating under poor hygienic conditions represents an unacceptable risk to public health.


BMC Research Notes | 2011

Comparison of diagnostic tests for the detection of Brucella spp. in camel sera

Mayada Gwida; Adel H. El-Gohary; Falk Melzer; Herbert Tomaso; Uwe Rösler; Ulrich Wernery; Renate Wernery; Mandy C. Elschner; Iahtasham Khan; Meike Eickhoff; Daniel Schöner; Heinrich Neubauer

BackgroundBrucellosis in livestock causes enormous losses for economies of developing countries and poses a severe health risk to consumers of dairy products. Little information is known especially on camel brucellosis and its impact on human health. For surveillance and control of the disease, sensitive and reliable detection methods are needed. Although serological tests are the mainstay of diagnosis in camel brucellosis, these tests have been directly transposed from cattle without adequate validation. To date, little information on application of real-time PCR for detection of Brucella in camel serum is available. Therefore, this study was performed to compare the diagnostic efficiency of different serological tests and real-time PCR in order to identify the most sensitive, rapid and simple combination of tests for detecting Brucella infection in camels.FindingsA total of 895 serum samples collected from apparently healthy Sudanese camels was investigated. Sudan is a well documented endemic region for brucellosis with cases in humans, ruminants, and camels. Rose Bengal Test (RBT), Complement Fixation Test (CFT), Slow Agglutination Test (SAT), Competitive Enzyme Linked Immunosorbant Assay (cELISA) and Fluorescence Polarization Assay (FPA) as well as real-time PCR were used. Our findings revealed that bcsp31 kDa real-time PCR detected Brucella DNA in 84.8% (759/895) of the examined samples, of which 15.5% (118/759) were serologically negative. Our results show no relevant difference in sensitivity between the different serological tests. FPA detected the highest number of positive cases (79.3%) followed by CFT (71.4%), RBT (70.7%), SAT (70.6%) and cELISA (68.8%). A combination of real-time PCR with one of the used serological tests identified brucellosis in more than 99% of the infected animals. 59.7% of the examined samples were positive in all serological tests and real-time PCR. A subpopulation of 6.8% of animals was positive in all serological tests but negative in real-time PCR assays. The high percentage of positive cases in this study does not necessarily reflect the seroprevalence of the disease in the country but might be caused by the fact that the camels were imported from brucellosis infected herds of Sudan, accidentally. Seroprevalence of brucellosis in camels should be examined in confirmatory studies to evaluate the importance of brucellosis in this animal species.ConclusionWe suggest combining bcsp31 real-time PCR with either FPA, CFT, RBT or SAT to screen camels for brucellosis.


BMC Veterinary Research | 2011

Use of a Western blot technique for the serodiagnosis of glanders

Mandy C. Elschner; Holger C. Scholz; Falk Melzer; Muhammad Saqib; Peggy Marten; Astrid Rassbach; Michael Dietzsch; Gernot Schmoock; Vania Lucia de Assis Santana; Marcilia Ma de Souza; Renate Wernery; Ulrich Wernery; Heinrich Neubauer

BackgroundThe in vivo diagnosis of glanders relies on the highly sensitive complement fixation test (CFT). Frequently observed false positive results are troublesome for veterinary authorities and cause financial losses to animal owners. Consequently, there is an urgent need to develop a test with high specificity. Hence, a Western blot assay making use of a partly purified lipopolysaccaride (LPS) containing antigen of three Burkholderia mallei strains was developed. The test was validated investigating a comprehensive set of positive and negative sera obtained from horses and mules from endemic and non endemic areas.ResultsThe developed Western blot assay showed a markedly higher diagnostic specificity when compared to the prescribed CFT and therefore can be used as a confirmatory test. However, the CFT remains the test of choice for routine testing of glanders due to its high sensitivity, its feasibility using standard laboratory equipment and its worldwide distribution in diagnostic laboratories.ConclusionsThe CFT should be amended by the newly validated Western blot to increase the positive likelihood ratio of glanders serodiagnosis in non endemic areas or areas with low glanders prevalence. Its use for international trade of horses and mules should be implemented by the OIE.


Journal of Clinical Microbiology | 2013

Interlaboratory Comparison of Intact-Cell Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry Results for Identification and Differentiation of Brucella spp.

Axel Karger; Falk Melzer; M. Timke; Barbara Bettin; Markus Kostrzewa; Karsten Nöckler; A. Hohmann; Herbert Tomaso; Heinrich Neubauer; S. Al Dahouk

ABSTRACT Classical microbiological diagnosis of human brucellosis is time-consuming, hazardous, and subject to variable interpretation. Intact-cell matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) was evaluated for the routine identification of Brucella spp. Analysis of mass peak patterns allowed accurate identification to the genus level. However, statistical models based on peak intensities were needed for definite species differentiation. Interlaboratory comparison confirmed the reproducibility of the results.

Collaboration


Dive into the Falk Melzer's collaboration.

Top Co-Authors

Avatar

Heinrich Neubauer

Friedrich Loeffler Institute

View shared research outputs
Top Co-Authors

Avatar

Mandy C. Elschner

Friedrich Loeffler Institute

View shared research outputs
Top Co-Authors

Avatar

Herbert Tomaso

Friedrich Loeffler Institute

View shared research outputs
Top Co-Authors

Avatar

Iahtasham Khan

University of Veterinary and Animal Sciences

View shared research outputs
Top Co-Authors

Avatar

Gamal Wareth

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Gernot Schmoock

Friedrich Loeffler Institute

View shared research outputs
Top Co-Authors

Avatar

Konrad Sachse

Friedrich Loeffler Institute

View shared research outputs
Top Co-Authors

Avatar

Uwe Roesler

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Muhammad Saqib

University of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Shahzad Ali

University of Veterinary and Animal Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge