Fallon Lin
Novartis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fallon Lin.
Science | 2016
Konstantinos Mavrakis; E. Robert McDonald; Michael R. Schlabach; Eric Billy; Gregory R. Hoffman; Antoine deWeck; David A. Ruddy; Kavitha Venkatesan; Jianjun Yu; Gregg McAllister; Mark Stump; Rosalie deBeaumont; Samuel Ho; Yingzi Yue; Yue Liu; Yan Yan-Neale; Guizhi Yang; Fallon Lin; Hong Yin; Hui Gao; D. Randal Kipp; Songping Zhao; Joshua T. McNamara; Elizabeth R. Sprague; Bing Zheng; Ying Lin; Young Shin Cho; Justin Gu; Kenneth Crawford; David N. Ciccone
Tumors put in a vulnerable position Cancer cells often display alterations in metabolism that help fuel their growth. Such metabolic “rewiring” may also work against the cancer cells, however, by creating new vulnerabilities that can be exploited therapeutically. A variety of human tumors show changes in methionine metabolism caused by loss of the gene coding for 5-methylthioadenosine phosphorylase (MTAP). Mavrakis et al. and Kryukov et al. found that the loss of MTAP renders cancer cell lines sensitive to growth inhibition by compounds that suppress the activity of a specific arginine methyltransferase called PRMT5. Conceivably, drugs that inhibit PRMT5 activity could be developed into a tailored therapy for MTAP-deficient tumors. Science, this issue pp. 1208 and 1214 Tumors cope with a genomic change by rewiring their metabolism, but this makes them more susceptible to certain drugs. 5-Methylthioadenosine phosphorylase (MTAP) is a key enzyme in the methionine salvage pathway. The MTAP gene is frequently deleted in human cancers because of its chromosomal proximity to the tumor suppressor gene CDKN2A. By interrogating data from a large-scale short hairpin RNA–mediated screen across 390 cancer cell line models, we found that the viability of MTAP-deficient cancer cells is impaired by depletion of the protein arginine methyltransferase PRMT5. MTAP-deleted cells accumulate the metabolite methylthioadenosine (MTA), which we found to inhibit PRMT5 methyltransferase activity. Deletion of MTAP in MTAP-proficient cells rendered them sensitive to PRMT5 depletion. Conversely, reconstitution of MTAP in an MTAP-deficient cell line rescued PRMT5 dependence. Thus, MTA accumulation in MTAP–deleted cancers creates a hypomorphic PRMT5 state that is selectively sensitized toward further PRMT5 inhibition. Inhibitors of PRMT5 that leverage this dysregulated metabolic state merit further investigation as a potential therapy for MTAP/CDKN2A-deleted tumors.
Cancer Research | 2014
Alexandra R. Grassian; Seth J. Parker; Shawn M. Davidson; Ajit S. Divakaruni; Courtney R. Green; Xiamei Zhang; Kelly Slocum; Minying Pu; Fallon Lin; Chad Vickers; Carol Joud-Caldwell; Franklin Chung; Hong Yin; Erika Handly; Christopher Sean Straub; Joseph D. Growney; Matthew G. Vander Heiden; Anne N. Murphy; Raymond Pagliarini; Christian M. Metallo
Oncogenic mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) occur in several types of cancer, but the metabolic consequences of these genetic changes are not fully understood. In this study, we performed (13)C metabolic flux analysis on a panel of isogenic cell lines containing heterozygous IDH1/2 mutations. We observed that under hypoxic conditions, IDH1-mutant cells exhibited increased oxidative tricarboxylic acid metabolism along with decreased reductive glutamine metabolism, but not IDH2-mutant cells. However, selective inhibition of mutant IDH1 enzyme function could not reverse the defect in reductive carboxylation activity. Furthermore, this metabolic reprogramming increased the sensitivity of IDH1-mutant cells to hypoxia or electron transport chain inhibition in vitro. Lastly, IDH1-mutant cells also grew poorly as subcutaneous xenografts within a hypoxic in vivo microenvironment. Together, our results suggest therapeutic opportunities to exploit the metabolic vulnerabilities specific to IDH1 mutation.
Journal of Biological Chemistry | 2012
Alexandra R. Grassian; Fallon Lin; Rosemary Barrett; Yue Liu; Wei Jiang; Manav Korpal; Holly Astley; Daniel Gitterman; Thomas Henley; Rob Howes; Julian Levell; Joshua Korn; Raymond Pagliarini
Background: Isocitrate dehydrogenase (IDH) mutations occur in diverse tumor types, leading to production of the oncometabolite 2-hydroxyglutarate (2-HG). Results: High 2-HG levels lead to a reversible epithelial-mesenchymal transition (EMT) phenotype, which is dependent on ZEB1/miR-200. Conclusion: Mutant IDH reversibly disrupts normal epithelial morphology through EMT induction, a possible tumorigenic mechanism. Significance: This is the first report of a reversible mutant IDH-dependent signaling phenotype. Mutations in the genes encoding isocitrate dehydrogenase 1 and 2 (IDH1/2) occur in a variety of tumor types, resulting in production of the proposed oncometabolite, 2-hydroxyglutarate (2-HG). How mutant IDH and 2-HG alter signaling pathways to promote cancer, however, remains unclear. Additionally, there exist relatively few cell lines with IDH mutations. To examine the effect of endogenous IDH mutations and 2-HG, we created a panel of isogenic epithelial cell lines with either wild-type IDH1/2 or clinically relevant IDH1/2 mutations. Differences were noted in the ability of IDH mutations to cause robust 2-HG accumulation. IDH1/2 mutants that produce high levels of 2-HG cause an epithelial-mesenchymal transition (EMT)-like phenotype, characterized by changes in EMT-related gene expression and cellular morphology. 2-HG is sufficient to recapitulate aspects of this phenotype in the absence of an IDH mutation. In the cells types examined, mutant IDH-induced EMT is dependent on up-regulation of the transcription factor ZEB1 and down-regulation of the miR-200 family of microRNAs. Furthermore, sustained knockdown of IDH1 in IDH1 R132H mutant cells is sufficient to reverse many characteristics of EMT, demonstrating that continued expression of mutant IDH is required to maintain this phenotype. These results suggest mutant IDH proteins can reversibly deregulate discrete signaling pathways that contribute to tumorigenesis.
Oncogene | 2015
Zineb Mounir; Fallon Lin; V G Lin; Joshua Korn; Y Yu; R Valdez; O H Aina; Gilles Buchwalter; A B Jaffe; M Korpal; P Zhu; Myles Brown; R D Cardiff; J L Rocnik; Y Yang; Raymond Pagliarini
The biological outcome of TMPRSS2:ERG chromosomal translocations in prostate cancer (PC) remains poorly understood. To address this, we compared the transcriptional effects of TMPRSS2:ERG expression in a transgenic mouse model with those of ERG knockdown in a TMPRSS2:ERG-positive PC cell line. This reveals that ERG represses the expression of a previously unreported set of androgen receptor (AR)—independent neuronal genes that are indicative of neuroendocrine (NE) cell differentiation—in addition to previously reported AR-regulated luminal genes. Cell sorting and proliferation assays performed after sustained ERG knockdown indicate that ERG drives proliferation and blocks the differentiation of prostate cells to both NE and luminal cell types. Inhibition of ERG expression in TMPRSS2:ERG-positive PC cells through blockade of AR signaling is tracked with increased NE gene expression. We also provide evidence that these NE cells are resistant to pharmacological AR inhibition and can revert to the phenotype of parental cells upon restoration of AR/ERG signaling. Our findings highlight an ERG-regulated mechanism capable of repopulating the parent tumor through the transient generation of an anti-androgen therapy-resistant cell population, suggesting that ERG may have a direct role in preventing resistance to anti-androgen therapy.
Molecular Cancer Therapeutics | 2014
Marius S. Pop; Nicolas Stransky; Colin W. Garvie; Jean-Philippe Theurillat; Emily Hartman; Tim Lewis; Cheng Zhong; Elizabeth K. Culyba; Fallon Lin; Douglas S. Daniels; Raymond Pagliarini; Lucienne Ronco; Angela N. Koehler; Levi A. Garraway
Members of the ETS transcription factor family have been implicated in several cancers, where they are often dysregulated by genomic derangement. ETS variant 1 (ETV1) is an ETS factor gene that undergoes chromosomal translocation in prostate cancers and Ewing sarcomas, amplification in melanomas, and lineage dysregulation in gastrointestinal stromal tumors. Pharmacologic perturbation of ETV1 would be appealing in these cancers; however, oncogenic transcription factors are often deemed “undruggable” by conventional methods. Here, we used small-molecule microarray screens to identify and characterize drug-like compounds that modulate the biologic function of ETV1. We identified the 1,3,5-triazine small molecule BRD32048 as a top candidate ETV1 perturbagen. BRD32048 binds ETV1 directly, modulating both ETV1-mediated transcriptional activity and invasion of ETV1-driven cancer cells. Moreover, BRD32048 inhibits p300-dependent acetylation of ETV1, thereby promoting its degradation. These results point to a new avenue for pharmacologic ETV1 inhibition and may inform a general means to discover small molecule perturbagens of transcription factor oncoproteins. Mol Cancer Ther; 13(6); 1492–502. ©2014 AACR.
ACS Medicinal Chemistry Letters | 2017
Julian Levell; Thomas Caferro; Gregg Chenail; Ina Dix; Julia Dooley; Brant Firestone; Pascal D. Fortin; John William Giraldes; Ty Gould; Joseph D. Growney; Michael D. Jones; Raviraj Kulathila; Fallon Lin; Gang Liu; Arne Mueller; Simon van der Plas; Kelly Slocum; Troy Smith; Rémi Terranova; B. Barry Touré; Viraj Tyagi; Trixie Wagner; Xiaoling Xie; Ming Xu; Fan S. Yang; Liping X. Zhou; Raymond Pagliarini; Young Shin Cho
High throughput screening and subsequent hit validation identified 4-isopropyl-3-(2-((1-phenylethyl)amino)pyrimidin-4-yl)oxazolidin-2-one as a potent inhibitor of IDH1R132H. Synthesis of the four separate stereoisomers identified the (S,S)-diastereomer (IDH125, 1f) as the most potent isomer. This also showed reasonable cellular activity and excellent selectivity vs IDH1wt. Initial structure-activity relationship exploration identified the key tolerances and potential for optimization. X-ray crystallography identified a functionally relevant allosteric binding site amenable to inhibitors, which can penetrate the blood-brain barrier, and aided rational optimization. Potency improvement and modulation of the physicochemical properties identified (S,S)-oxazolidinone IDH889 (5x) with good exposure and 2-HG inhibitory activity in a mutant IDH1 xenograft mouse model.
eLife | 2016
Zineb Mounir; Joshua Korn; Thomas Westerling; Fallon Lin; Christina A. Kirby; Markus Schirle; Gregg McAllister; Greg Hoffman; Nadire Ramadan; Anke Hartung; Yan Feng; David Randal Kipp; Christopher Quinn; Michelle Fodor; Jason Baird; Marie Schoumacher; Ronald Meyer; James Deeds; Gilles Buchwalter; Travis Stams; Nicholas Keen; William R. Sellers; Myles Brown; Raymond Pagliarini
The TMPRSS2:ERG gene fusion is common in androgen receptor (AR) positive prostate cancers, yet its function remains poorly understood. From a screen for functionally relevant ERG interactors, we identify the arginine methyltransferase PRMT5. ERG recruits PRMT5 to AR-target genes, where PRMT5 methylates AR on arginine 761. This attenuates AR recruitment and transcription of genes expressed in differentiated prostate epithelium. The AR-inhibitory function of PRMT5 is restricted to TMPRSS2:ERG-positive prostate cancer cells. Mutation of this methylation site on AR results in a transcriptionally hyperactive AR, suggesting that the proliferative effects of ERG and PRMT5 are mediated through attenuating AR’s ability to induce genes normally involved in lineage differentiation. This provides a rationale for targeting PRMT5 in TMPRSS2:ERG positive prostate cancers. Moreover, methylation of AR at arginine 761 highlights a mechanism for how the ERG oncogene may coax AR towards inducing proliferation versus differentiation. DOI: http://dx.doi.org/10.7554/eLife.13964.001
Cancer Research | 2014
Alexandra R. Grassian; Seth J. Parker; Shawn M. Davidson; Ajit S. Divakaruni; Courtney R. Green; Xiamei Zhang; Kelly Slocum; Minying Pu; Fallon Lin; Chad Vickers; Carol Joud-Caldwell; Franklin Chung; Hong Yin; Erika Handly; Christopher Sean Straub; Joseph D. Growney; Matt Vander Heiden; Anne N. Murphy; Raymond Pagliarini; Christian M. Metallo
Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA Mutations in the genes encoding isocitrate dehydrogenase 1 and 2 (IDH1/2) occur in a variety of tumor types, resulting in production of the proposed oncometabolite, 2-hydroxyglutarate (2-HG). How mutant IDH alters central carbon metabolism, though, remains unclear. To address this question, we performed 13C metabolic flux analysis (MFA) on an isogenic cell panel containing heterozygous IDH1/2 mutations. We observe a dramatic and consistent decrease in the ability of IDH1, but not IDH2, mutant cell lines to utilize reductive glutamine metabolism via the carboxylation of α-ketoglutarate to isocitrate. Additionally we find that cells with IDH1 mutations exhibit increased oxidative tricarboxylic acid (TCA) metabolism. Similar metabolic trends were observed in vivo as well, and also in endogenous, non-engineered IDH1/2 mutant cell lines. Interestingly, IDH1-mutant specific inhibitors were unable to reverse the decrease in reductive metabolism, suggesting that this metabolic phenotype is independent of 2-HG. Furthermore, this metabolic reprogramming increases the sensitivity of IDH1 mutant cells to hypoxia or electron transport chain (ETC) inhibition in vitro . IDH1 mutant cells also grow poorly as subcutaneous xenografts within hypoxic in vivo microenvironments. These results suggest that exploiting metabolic defects specific to IDH1 mutant cells could be an interesting avenue to explore therapeutically. Citation Format: Alexandra R. Grassian, Seth Parker, Shawn Davidson, Ajit Divakaruni, Courtney Green, Xiamei Zhang, Kelly Slocum, Minying Pu, Fallon Lin, Chad Vickers, Carol Joud-Caldwell, Franklin Chung, Hong Yin, Erika Handly, Christopher Straub, Joseph D. Growney, Matt Vander Heiden, Anne Murphy, Raymond Pagliarini, Christian Metallo. IDH1 mutations alter citric acid cycle metabolism and increase dependence on oxidative mitochondrial metabolism. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr LB-139. doi:10.1158/1538-7445.AM2014-LB-139
Cancer Research | 2016
Konstantinos Mavrakis; E. Robert McDonald; Michael R. Schlabach; Eric Billy; Gregory R. Hoffman; Antoine deWeck; David A. Ruddy; Kavitha Venkatesan; Greg McAllister; Rosalie deBeaumont; Samuel Ho; Yue Liu; Yan Yan-Neale; Guizhi Yang; Fallon Lin; Hong Yin; Hui Gao; David Randal Kipp; Songping Zhao; Joshua T. McNamara; Elizabeth R. Sprague; Young Shin Cho; Justin Gu; Ken Crawford; Vladimir Capka; Kristen E. Hurov; Jeffrey A. Porter; John A. Tallarico; Craig Mickanin; Emma Lees
Metabolic genes are increasingly recognized as targets of somatic genetic alteration in human cancer often leading to profound changes in intracellular metabolite concentrations. 5-Methylthioadenosine Phosphorylase (MTAP) is a key enzyme in the methionine salvage pathway that metabolizes methylthioadenosine (MTA) to adenine and methionine. Its chromosomal position proximal to CDKN2A results in frequent collateral homozygous deletion in a wide range of human cancers. By interrogating data from a large scale deep-coverage pooled shRNA screen across 390 cancer cell line models we found that the viability of MTAP null cancer cells is strongly impaired upon shRNA-mediated depletion of the protein arginine methyltransferase PRMT5. In MTAP deleted cells there is marked accumulation of the substrate MTA and surprisingly, we find that MTA is a specific inhibitor of the catalytic activity of PRMT5. In keeping with these data, knockout of MTAP in an MTAP-proficient cell line led to increased MTA levels and rendered them sensitive to PRMT5 depletion. Moreover, reconstitution of MTAP in an MTAP-deficient cell line fully rescued PRMT5 dependence. Collectively, these findings indicate that the collateral loss of MTAP in CDNK2A deleted cancers leads to accumulation of MTA that thereby creates a hypomorphic PRMT5 state that is selectively sensitized towards further PRMT5 inhibition. Citation Format: Konstantinos Mavrakis, E Robert McDonald III, Michael R. Schlabach, Eric Billy, Gregory R. Hoffman, Antoine deWeck, David A. Ruddy, Kavitha Venkatesan, Greg McAllister, Rosalie deBeaumont, Samuel Ho, Yue Liu, Yan Yan-Neale, Guizhi Yang, Fallon Lin, Hong Yin, Hui Gao, David Randal Kipp, Songping Zhao, Joshua T. McNamara, Elizabeth R. Sprague, Young Shin Cho, Justin Gu, Ken Crawford, Vladimir Capka, Kristen Hurov, Jeffrey A. Porter, John Tallarico, Craig Mickanin, Emma Lees, Raymond Pagliarini, Nicholas Keen, Tobias Schmelzle, Francesco Hofmann, Frank Stegmeier, William R. Sellers. Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers leads to marked dependence on PRMT5. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr LB-017.
Cancer Research | 2014
Marius S. Pop; Nicolas Stransky; Colin W. Garvie; Jean-Philippe Theurillat; Tim Lewis; Cheng Zhong; Elizabeth K. Culyba; Fallon Lin; Douglas S. Daniels; Raymond Pagliarini; Lucienne Ronco; Angela N. Koehler; Levi A. Garraway
Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA Members of the ETS transcription factor family have been implicated in several cancers, where they are often dysregulated by genomic derangement. ETS variant 1 (ETV1) is an ETS factor gene that undergoes chromosomal translocation in prostate cancers and Ewings sarcomas, amplification in melanomas, and lineage dysregulation in gastrointestinal stromal tumors. Pharmacologic perturbation of ETV1 would be appealing in these cancers; however, oncogenic transcription factors are often deemed “undruggable” by conventional methods. Here, we used small-molecule microarray (SMM) screens to identify and characterize drug-like compounds that modulate the biological function of ETV1. We identified the 1,3,5-triazine small molecule BRD32048 as a top candidate ETV1 perturbagen. BRD32048 binds ETV1 directly, modulating both ETV1-mediated transcriptional activity and invasion of ETV1-driven cancer cells. Moreover, BRD32048 inhibits p300-dependent acetylation of ETV1, thereby promoting its degradation. These results point to a new avenue for pharmacological ETV1 inhibition and may inform a general means to discover small molecule perturbagens of transcription factor oncoproteins. Note: This abstract was not presented at the meeting. Citation Format: Marius Pop, Nicolas Stransky, Colin Garvie, Jean-Philippe Theurillat, Timothy Lewis, Cheng Zhong, Elizabeth Culyba, Fallon Lin, Douglas Daniels, Raymond Pagliarini, Lucienne Ronco, Angela Koehler, Levi Garraway. A small molecule that binds and inhibits the ETV1 transcription factor oncoprotein. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 2519. doi:10.1158/1538-7445.AM2014-2519