Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fan Lv is active.

Publication


Featured researches published by Fan Lv.


Nano Letters | 2014

Amorphous Vanadium Oxide Matrixes Supporting Hierarchical Porous Fe3O4/Graphene Nanowires as a High-Rate Lithium Storage Anode

Qinyou An; Fan Lv; Qiuqi Liu; Chunhua Han; Kangning Zhao; Jinzhi Sheng; Qiulong Wei; Mengyu Yan; Liqiang Mai

Developing electrode materials with both high energy and power densities holds the key for satisfying the urgent demand of energy storage worldwide. In order to realize the fast and efficient transport of ions/electrons and the stable structure during the charge/discharge process, hierarchical porous Fe3O4/graphene nanowires supported by amorphous vanadium oxide matrixes have been rationally synthesized through a facile phase separation process. The porous structure is directly in situ constructed from the FeVO4·1.1H2O@graphene nanowires along with the crystallization of Fe3O4 and the amorphization of vanadium oxide without using any hard templates. The hierarchical porous Fe3O4/VOx/graphene nanowires exhibit a high Coulombic efficiency and outstanding reversible specific capacity (1146 mAh g(-1)). Even at the high current density of 5 A g(-1), the porous nanowires maintain a reversible capacity of ∼500 mAh g(-1). Moreover, the amorphization and conversion reactions between Fe and Fe3O4 of the hierarchical porous Fe3O4/VOx/graphene nanowires were also investigated by in situ X-ray diffraction and X-ray photoelectron spectroscopy. Our work demonstrates that the amorphous vanadium oxides matrixes supporting hierarchical porous Fe3O4/graphene nanowires are one of the most attractive anodes in energy storage applications.


Advanced Materials | 2017

Oxygen Vacancies Dominated NiS2/CoS2 Interface Porous Nanowires for Portable Zn–Air Batteries Driven Water Splitting Devices

Jie Yin; Yuxuan Li; Fan Lv; Min Lu; Ke Sun; Wei Wang; Lei Wang; Fangyi Cheng; Yefei Li; Pinxian Xi; Shaojun Guo

The development of highly active and stable oxygen evolution reaction (OER) electrocatalysts is crucial for improving the efficiency of water splitting and metal-air battery devices. Herein, an efficient strategy is demonstrated for making the oxygen vacancies dominated cobalt-nickel sulfide interface porous nanowires (NiS2 /CoS2 -O NWs) for boosting OER catalysis through in situ electrochemical reaction of NiS2 /CoS2 interface NWs. Because of the abundant oxygen vacancies and interface porous nanowires structure, they can catalyze the OER efficiently with a low overpotential of 235 mV at j = 10 mA cm-2 and remarkable long-term stability in 1.0 m KOH. The home-made rechargeable portable Zn-air batteries by using NiS2 /CoS2 -O NWs as the air-cathode display a very high open-circuit voltage of 1.49 V, which can maintain for more than 30 h. Most importantly, a highly efficient self-driven water splitting device is designed with NiS2 /CoS2 -O NWs as both anode and cathode, powered by two-series-connected NiS2 /CoS2 -O NWs-based portable Zn-air batteries. The present work opens a new way for designing oxygen vacancies dominated interface nanowires as highly efficient multifunctional electrocatalysts for electrochemical reactions and renewable energy devices.


Advanced Materials | 2016

Tuning Nanowires and Nanotubes for Efficient Fuel-Cell Electrocatalysis

Wei Wang; Fan Lv; Bo Lei; Sheng Wan; Mingchuan Luo; Shaojun Guo

Developing new synthetic methods for the controlled synthesis of Pt-based or non-Pt nanocatalysts with low or no Pt loading to facilitate sluggish cathodic oxygen reduction reaction (ORR) and organics oxidation reactions is the key in the development of fuel-cell technology. Various nanoparticles (NPs), with a range of size, shape, composition, and structure, have shown good potential to catalyze the sluggish cathodic and anodic reactions. In contrast to NPs, one-dimensional (1D) nanomaterials such as nanowires (NWs), and nanotubes (NTs), exhibit additional advantages associated with their anisotropy, unique structure, and surface properties. The prominent characteristics of NWs and NTs include fewer lattice boundaries, a lower number of surface defect sites, and easier electron and mass transport for better electrocatalytic activity and lower vulnerability to dissolution, Ostwald ripening, and aggregation than Pt NPs for enhanced stability. An overview of recent advances in tuning 1D nanostructured Pt-based, Pd-based, or 1D metal-free nanomaterials as advanced electrocatalysts is provided here, for boosting fuel-cell reactions with high activity and stability, including the oxygen reduction reaction (ORR), methanol oxidation reaction (MOR), and ethanol oxidation reaction (EOR). After highlighting the different strategies developed so far for the synthesis of Pt-based 1D nanomaterials with controlled size, shape, and composition, special emphasis is placed on the rational design of diverse NWs and NTs catalysts such as Pt-based NWs or NTs, non-Pt NTs, and carbon NTs with molecular engineering, etc. for enhancing the ORR, MOR, and EOR. Finally, some perspectives are highlighted on the development of more efficient fuel-cell electrocatalysts featuring high stability, low cost, and enhanced performance, which are the key factors in accelerating the commercialization of fuel-cell technology.


Small | 2015

Three-Dimensional Interconnected Vanadium Pentoxide Nanonetwork Cathode for High-Rate Long-Life Lithium Batteries

Qinyou An; Qiulong Wei; Pengfei Zhang; Jinzhi Sheng; Kalele Mulonda Hercule; Fan Lv; Qinqin Wang; Xiujuan Wei; Liqiang Mai

Three-dimensional interconnected vanadium pentoxide nanonetworks as cathodes for rechargable lithium batteries are successfully synthesized via a quick gelation followed by annealing. The interconnected structure ensures the electron transport of each unit. And their inner porous structure buffer the volume change over long-term repeated lithium ion insertion/extraction cycles, leading to the high-rate long-life cycling performance.


Advanced Materials | 2017

Iridium-Based Multimetallic Porous Hollow Nanocrystals for Efficient Overall-Water-Splitting Catalysis.

Jianrui Feng; Fan Lv; Weiyu Zhang; Peihao Li; Kai Wang; Chao Yang; Bin Wang; Yong Yang; Jinhui Zhou; Fei Lin; Gui-Chang Wang; Shaojun Guo

The development of active and durable bifunctional electrocatalysts for overall water splitting is mandatory for renewable energy conversion. This study reports a general method for controllable synthesis of a class of IrM (M = Co, Ni, CoNi) multimetallic porous hollow nanocrystals (PHNCs), through etching Ir-based, multimetallic, solid nanocrystals using Fe3+ ions, as catalysts for boosting overall water splitting. The Ir-based multimetallic PHNCs show transition-metal-dependent bifunctional electrocatalytic activities for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in acidic electrolyte, with IrCo and IrCoNi PHNCs being the best for HER and OER, respectively. First-principles calculations reveal a ligand effect, induced by alloying Ir with 3d transition metals, can weaken the adsorption energy of oxygen intermediates, which is the key to realizing much-enhanced OER activity. The IrCoNi PHNCs are highly efficient in overall-water-splitting catalysis by showing a low cell voltage of only 1.56 V at a current density of 2 mA cm-2 , and only 8 mV of polarization-curve shift after a 1000-cycle durability test in 0.5 m H2 SO4 solution. This work highlights a potentially powerful strategy toward the general synthesis of novel, multimetallic, PHNCs as highly active and durable bifunctional electrocatalysts for high-performance electrochemical overall-water-splitting devices.


Journal of Materials Chemistry | 2017

Porous ZrNb24O62 nanowires with pseudocapacitive behavior achieve high-performance lithium-ion storage

Chao Yang; Yelong Zhang; Fan Lv; Chunfu Lin; Yao Liu; Kai Wang; Jianrui Feng; Xiaohong Wang; Yongjun Chen; Jianbao Li; Shaojun Guo

The ever-increasing power and energy demands for modern consumer electronics and electric vehicles are driving the pursuit of energy-storage technologies beyond the current horizon. Pseudocapacitive charge storage is one of the most effective and promising approaches to fill this technology gap, owing to its potential to deliver both high power and energy densities. Typically, titanium niobium oxides (TiNbxO2+2.5x (x = 2, 5 and 24)) with intrinsic pseudocapacitance, high safety and theoretical capacities of 388–402 mA h g−1 are recognized as promising anode materials for lithium-ion batteries. However, their poor conductivity and low Li+-ion diffusion coefficient are known to be the major hurdles limiting the full utilization of their pseudocapacitive effects, leading to their lackluster rate capabilities. Herein, we employ a facile electrospinning method to prepare one-dimensional hierarchically porous ZrNb24O62 nanowires (P-ZrNb24O62) with an ultra-large Li+-ion diffusion coefficient as a new intercalating pseudocapacitive material for boosting Li+-ion storage. The P-ZrNb24O62 exhibits excellent electrochemical performances, including a high reversible capacity (320 mA h g−1 at 0.1C), safe working potential (∼1.67 V vs. Li/Li+), high initial coulombic efficiency (90.1%), outstanding rate capability (182 mA h g−1 at 30C) and durable long-term cyclability (90.2% capacity retention over 1500 cycles).


Angewandte Chemie | 2018

MoB/g-C3N4 Interface Materials as a Schottky Catalyst to Boost Hydrogen Evolution

Zechao Zhuang; Yong Li; Zilan Li; Fan Lv; Zhiquan Lang; Kangning Zhao; Liang Zhou; Lyudmila V. Moskaleva; Shaojun Guo; Liqiang Mai

Proton adsorption on metallic catalysts is a prerequisite for efficient hydrogen evolution reaction (HER). However, tuning proton adsorption without perturbing metallicity remains a challenge. A Schottky catalyst based on metal-semiconductor junction principles is presented. With metallic MoB, the introduction of n-type semiconductive g-C3 N4 induces a vigorous charge transfer across the MoB/g-C3 N4 Schottky junction, and increases the local electron density in MoB surface, confirmed by multiple spectroscopic techniques. This Schottky catalyst exhibits a superior HER activity with a low Tafel slope of 46u2005mVu2009dec-1 and a high exchange current density of 17u2005μAu2009cm-2 , which is far better than that of pristine MoB. First-principle calculations reveal that the Schottky contact dramatically lowers the kinetic barriers of both proton adsorption and reduction coordinates, therefore benefiting surface hydrogen generation.


Nano Research | 2014

Metastable amorphous chromium-vanadium oxide nanoparticles with superior performance as a new lithium battery cathode

Jinzhi Sheng; Qidong Li; Qiulong Wei; Pengfei Zhang; Qinqin Wang; Fan Lv; Qinyou An; Wei Chen; Liqiang Mai

AbstractThe main drawbacks of vanadium oxide as a cathode material are its low conductivity, low practical capacity and poor cycling stability. Adding Cr can improve its conductivity and a metastable amorphous state may provide higher capacity and stability. In this work, metastable amorphous Cr-V-O nanoparticles have been successfully prepared through a facile co-precipitation reaction followed by annealing treatment. As a cathode material for lithium batteries, the metastable amorphous Cr-V-O nanoparticles exhibit high capacity (260 mAh/g at 100 mA/g between 1.5–4 V), low capacity loss (more than 80% was retained after 200 cycles at 100 mA/g) and high rate capability (up to 3 A/g).n


Advanced Materials | 2018

Pistachio-Shuck-Like MoSe2/C Core/Shell Nanostructures for High-Performance Potassium-Ion Storage

Wei Wang; Bo Jiang; Chang Qian; Fan Lv; Jianrui Feng; Jinhui Zhou; Kai Wang; Chao Yang; Yong Yang; Shaojun Guo

Potassium-ion batteries (KIBs) have recently attracted intensive attention because of the abundant potassium resources and their low cost and high safety. However, the major challenge faced by KIBs lies in the lack of stable and high-capacity materials for the intercalation/deintercalation of large-size potassium ions. A unique pistachio-shuck-like MoSe2 /C core/shell nanostructure (PMC) is synthesized herein as an advanced anode for boosting the performance of KIBs. This PMC is featured with a few layers of molybdenum selenide as the core with an expanded interlayer spacing of ≈0.85 nm, facilitating the intercalation/deintercalation of K ions, and a thin amorphous carbon as the shell, which can confine the active molybdenum selenide nanosheets during cycling for maintaining the high structural stability. Most importantly, as a whole, the PMC has the advantages of reducing the surplus hollow interior space for improving its packing density and buffering the volume expansion during the K-ion intercalation for further enhancing the stability. As a consequence, the PMC shows a very high capacity of 322 mAh g-1 at 0.2 A g-1 over 100 cycles, and can still remain 226 mAh g-1 at 1.0 A g-1 for a long period of 1000 cycles, which is among the best-reported KIBs anodes.


Small | 2018

Defects and Interfaces on PtPb Nanoplates Boost Fuel Cell Electrocatalysis

Yingjun Sun; Y.X. Liang; Mingchuan Luo; Fan Lv; Yingnan Qin; Lei Wang; Chuan Xu; Engang Fu; Shaojun Guo

Nanostructured Pt is the most efficient single-metal catalyst for fuel cell technology. Great efforts have been devoted to optimizing the Pt-based alloy nanocrystals with desired structure, composition, and shape for boosting the electrocatalytic activity. However, these well-known controls still show the limited ability in maximizing the Pt utilization efficiency for achieving more efficient fuel cell catalysis. Herein, a new strategy for maximizing the fuel cell catalysis by controlling/tuning the defects and interfaces of PtPb nanoplates using ion irradiation technique is reported. The defects and interfaces on PtPb nanoplates, controlled by the fluence of incident C+ ions, make them exhibit the volcano-like electrocatalytic activity for methanol oxidation reaction (MOR), ethanol oxidation reaction (EOR), and oxygen reduction reaction (ORR) as a function of ion irradiation fluence. The optimized PtPb nanoplates with the mixed structure of dislocations, subgrain boundaries, and small amorphous domains are the most active for MOR, EOR, and ORR. They can also maintain high catalytic stability in acid solution. This work highlights the impact and significance of inducing/controlling the defects and interfaces on Pt-based nanocrystals toward maximizing the catalytic performance by advanced ion irradiation strategy.

Collaboration


Dive into the Fan Lv's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liqiang Mai

Wuhan University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge