Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fan Yan Wei is active.

Publication


Featured researches published by Fan Yan Wei.


Journal of Clinical Investigation | 2011

Deficit of tRNALys modification by Cdkal1 causes the development of type 2 diabetes in mice

Fan Yan Wei; Takeo Suzuki; Sayaka Watanabe; Satoshi Kimura; Taku Kaitsuka; Atsushi Fujimura; Hideki Matsui; Mohamed Atta; Hiroyuki Michiue; Marc Fontecave; Kazuya Yamagata; Tsutomu Suzuki; Kazuhito Tomizawa

The worldwide prevalence of type 2 diabetes (T2D), which is caused by a combination of environmental and genetic factors, is increasing. With regard to genetic factors, variations in the gene encoding Cdk5 regulatory associated protein 1-like 1 (Cdkal1) have been associated with an impaired insulin response and increased risk of T2D across different ethnic populations, but the molecular function of this protein has not been characterized. Here, we show that Cdkal1 is a mammalian methylthiotransferase that biosynthesizes 2-methylthio-N6-threonylcarbamoyladenosine (ms2t6A) in tRNA(Lys)(UUU) and that it is required for the accurate translation of AAA and AAG codons. Mice with pancreatic β cell-specific KO of Cdkal1 (referred to herein as β cell KO mice) showed pancreatic islet hypertrophy, a decrease in insulin secretion, and impaired blood glucose control. In Cdkal1-deficient β cells, misreading of Lys codon in proinsulin occurred, resulting in a reduction of glucose-stimulated proinsulin synthesis. Moreover, expression of ER stress-related genes was upregulated in these cells, and abnormally structured ER was observed. Further, the β cell KO mice were hypersensitive to high fat diet-induced ER stress. These findings suggest that glucose-stimulated translation of proinsulin may require fully modified tRNA(Lys)(UUU), which could potentially explain the molecular pathogenesis of T2D in patients carrying cdkal1 risk alleles.


Journal of Biological Chemistry | 2010

Identification of Eukaryotic and Prokaryotic Methylthiotransferase for Biosynthesis of 2-Methylthio-N6-threonylcarbamoyladenosine in tRNA

Simon Arragain; Samuel K. Handelman; Farhad Forouhar; Fan Yan Wei; Kazuhito Tomizawa; John F. Hunt; Thierry Douki; Marc Fontecave; Etienne Mulliez; Mohamed Atta

Bacterial and eukaryotic transfer RNAs have been shown to contain hypermodified adenosine, 2-methylthio-N6-threonylcarbamoyladenosine, at position 37 (A37) adjacent to the 3′-end of the anticodon, which is essential for efficient and highly accurate protein translation by the ribosome. Using a combination of bioinformatic sequence analysis and in vivo assay coupled to HPLC/MS technique, we have identified, from distinct sequence signatures, two methylthiotransferase (MTTase) subfamilies, designated as MtaB in bacterial cells and e-MtaB in eukaryotic and archaeal cells. Both subfamilies are responsible for the transformation of N6-threonylcarbamoyladenosine into 2-methylthio-N6-threonylcarbamoyladenosine. Recently, a variant within the human CDKAL1 gene belonging to the e-MtaB subfamily was shown to predispose for type 2 diabetes. CDKAL1 is thus the first eukaryotic MTTase identified so far. Using purified preparations of Bacillus subtilis MtaB (YqeV), a CDKAL1 bacterial homolog, we demonstrate that YqeV/CDKAL1 enzymes, as the previously studied MTTases MiaB and RimO, contain two [4Fe-4S] clusters. This work lays the foundation for elucidating the function of CDKAL1.


Nature Communications | 2017

Cysteinyl-tRNA synthetase governs cysteine polysulfidation and mitochondrial bioenergetics

Takaaki Akaike; Tomoaki Ida; Fan Yan Wei; Motohiro Nishida; Yoshito Kumagai; Md. Morshedul Alam; Hideshi Ihara; Tomohiro Sawa; Tetsuro Matsunaga; Shingo Kasamatsu; Akiyuki Nishimura; Masanobu Morita; Kazuhito Tomizawa; Akira Nishimura; Satoshi Watanabe; Kenji Inaba; Hiroshi Shima; Nobuhiro Tanuma; Minkyung Jung; Shigemoto Fujii; Yasuo Watanabe; Masaki Ohmuraya; Péter Nagy; Martin Feelisch; Jon M. Fukuto; Hozumi Motohashi

Cysteine hydropersulfide (CysSSH) occurs in abundant quantities in various organisms, yet little is known about its biosynthesis and physiological functions. Extensive persulfide formation is apparent in cysteine-containing proteins in Escherichia coli and mammalian cells and is believed to result from post-translational processes involving hydrogen sulfide-related chemistry. Here we demonstrate effective CysSSH synthesis from the substrate l-cysteine, a reaction catalyzed by prokaryotic and mammalian cysteinyl-tRNA synthetases (CARSs). Targeted disruption of the genes encoding mitochondrial CARSs in mice and human cells shows that CARSs have a crucial role in endogenous CysSSH production and suggests that these enzymes serve as the principal cysteine persulfide synthases in vivo. CARSs also catalyze co-translational cysteine polysulfidation and are involved in the regulation of mitochondrial biogenesis and bioenergetics. Investigating CARS-dependent persulfide production may thus clarify aberrant redox signaling in physiological and pathophysiological conditions, and suggest therapeutic targets based on oxidative stress and mitochondrial dysfunction.Cysteine hydropersulfides (CysSSH) are believed to have a cellular redox protective role. Here the authors show that these species can be produced from L-cysteine by cysteinyl-tRNA synthetases and that these enzymes are also involved in mitochondrial biogenesis and bioenergetics regulation.


Cell Metabolism | 2015

Cdk5rap1-Mediated 2-Methylthio Modification of Mitochondrial tRNAs Governs Protein Translation and Contributes to Myopathy in Mice and Humans

Fan Yan Wei; Bo Zhou; Takeo Suzuki; Keishi Miyata; Yoshihiro Ujihara; Haruki Horiguchi; Nozomu Takahashi; Peiyu Xie; Hiroyuki Michiue; Atsushi Fujimura; Taku Kaitsuka; Hideki Matsui; Yasutoshi Koga; Satoshi Mohri; Tsutomu Suzuki; Yuichi Oike; Kazuhito Tomizawa

Transfer RNAs (tRNAs) contain a wide variety of posttranscriptional modifications that are important for accurate decoding. Mammalian mitochondrial tRNAs (mt-tRNAs) are modified by nuclear-encoded tRNA-modifying enzymes; however, the physiological roles of these modifications remain largely unknown. In this study, we report that Cdk5 regulatory subunit-associated protein 1 (Cdk5rap1) is responsible for 2-methylthio (ms(2)) modifications of mammalian mt-tRNAs for Ser(UCN), Phe, Tyr, and Trp codons. Deficiency in ms(2) modification markedly impaired mitochondrial protein synthesis, which resulted in respiratory defects in Cdk5rap1 knockout (KO) mice. The KO mice were highly susceptive to stress-induced mitochondrial remodeling and exhibited accelerated myopathy and cardiac dysfunction under stressed conditions. Furthermore, we demonstrate that the ms(2) modifications of mt-tRNAs were sensitive to oxidative stress and were reduced in patients with mitochondrial disease. These findings highlight the fundamental role of ms(2) modifications of mt-tRNAs in mitochondrial protein synthesis and their pathological consequences in mitochondrial disease.


Human Molecular Genetics | 2014

Identification of a splicing variant that regulates type 2 diabetes risk factor CDKAL1 level by a coding-independent mechanism in human

Bo Zhou; Fan Yan Wei; Narumi Kanai; Atsushi Fujimura; Taku Kaitsuka; Kazuhito Tomizawa

Single-nucleotide polymorphisms (SNPs) in CDKAL1 have been associated with the development of type 2 diabetes (T2D). CDKAL1 catalyzes 2-methylthio modification of adenosine at position 37 of tRNA(Lys)(UUU). A deficit of this modification causes aberrant protein synthesis, and is associated with impairment of insulin secretion in both mouse model and human. However, it is unknown whether the T2D-associated SNPs in CDKAL1 are associated with downregulation of CDKAL1 by regulating the gene expression. Here, we report a specific splicing variant of CDKAL1 termed CDKAL1-v1 that is markedly lower in individuals carrying risk SNPs of CDKAL1. Interestingly, CDKAL1-v1 is a non-coding transcript, which regulates the CDKAL1 level by competitive binding to a CDKAL1-targeting miRNA. By direct editing of the genome, we further show that the nucleotides around the SNP regions are critical for the alternative splicing of CDKAL1-v1. These findings reveal that the T2D-associated SNPs in CDKAL1 reduce CDKAL1-v1 levels by impairing splicing, which in turn increases miRNA-mediated suppression of CDKAL1. Our results suggest that CDKAL1-v1-mediated suppression of CDKAL1 might underlie the pathogenesis of T2D in individuals carrying the risk SNPs.


Journal of Biological Chemistry | 2014

High oxygen condition facilitates the differentiation of mouse and human pluripotent stem cells into pancreatic progenitors and insulin-producing cells

Farzana Hakim; Taku Kaitsuka; Jamiruddin Mohd Raeed; Fan Yan Wei; Nobuaki Shiraki; Tadayuki Akagi; Takashi Yokota; Shoen Kume; Kazuhito Tomizawa

Background: Oxygen plays a key role in organ development, including pancreatic β-cells. Results: High oxygen conditions increase Ngn3-positive and insulin-positive cells from both mouse and human pluripotent stem cells. Conclusion: Culturing under high oxygen conditions has a facilitative effect on pancreatic differentiation. Significance: This new technique provides an efficient method to utilize patient-specific iPS cells for the treatment of diabetes. Pluripotent stem cells have potential applications in regenerative medicine for diabetes. Differentiation of stem cells into insulin-producing cells has been achieved using various protocols. However, both the efficiency of the method and potency of differentiated cells are insufficient. Oxygen tension, the partial pressure of oxygen, has been shown to regulate the embryonic development of several organs, including pancreatic β-cells. In this study, we tried to establish an effective method for the differentiation of induced pluripotent stem cells (iPSCs) into insulin-producing cells by culturing under high oxygen (O2) conditions. Treatment with a high O2 condition in the early stage of differentiation increased insulin-positive cells at the terminus of differentiation. We found that a high O2 condition repressed Notch-dependent gene Hes1 expression and increased Ngn3 expression at the stage of pancreatic progenitors. This effect was caused by inhibition of hypoxia-inducible factor-1α protein level. Moreover, a high O2 condition activated Wnt signaling. Optimal stage-specific treatment with a high O2 condition resulted in a significant increase in insulin production in both mouse embryonic stem cells and human iPSCs and yielded populations containing up to 10% C-peptide-positive cells in human iPSCs. These results suggest that culturing in a high O2 condition at a specific stage is useful for the efficient generation of insulin-producing cells.


Journal of Biological Chemistry | 2012

Anks4b, a novel target of HNF4α protein, interacts with GRP78 protein and regulates endoplasmic reticulum stress-induced apoptosis in pancreatic β-cells

Yoshifumi Sato; Mitsutoki Hatta; Md. Fazlul Karim; Tomohiro Sawa; Fan Yan Wei; Shoki Sato; Mark A. Magnuson; Frank J. Gonzalez; Kazuhito Tomizawa; Takaaki Akaike; Tatsuya Yoshizawa; Kazuya Yamagata

Background: Target genes of HNF4α in β-cells are largely unknown. Results: Expression of Anks4b is decreased in the βHNF4α KO islets. HNF4α activates Anks4b promoter activity. Anks4b binds to GRP78 and regulates sensitivity to ER stress. Conclusion: HNF4α novel target gene, Anks4b, regulates the susceptibility of β-cells to ER stress. Significance: Anks4b is a novel molecule involved in ER stress. Mutations of the HNF4A gene cause a form of maturity-onset diabetes of the young (MODY1) that is characterized by impairment of pancreatic β-cell function. HNF4α is a transcription factor belonging to the nuclear receptor superfamily (NR2A1), but its target genes in pancreatic β-cells are largely unknown. Here, we report that ankyrin repeat and sterile α motif domain containing 4b (Anks4b) is a target of HNF4α in pancreatic β-cells. Expression of Anks4b was decreased in both βHNF4α KO islets and HNF4α knockdown MIN6 β-cells, and HNF4α activated Anks4b promoter activity. Anks4b bound to glucose-regulated protein 78 (GRP78), a major endoplasmic reticulum (ER) chaperone protein, and overexpression of Anks4b enhanced the ER stress response and ER stress-associated apoptosis of MIN6 cells. Conversely, suppression of Anks4b reduced β-cell susceptibility to ER stress-induced apoptosis. These results indicate that Anks4b is a HNF4α target gene that regulates ER stress in β-cells by interacting with GRP78, thus suggesting that HNF4α is involved in maintenance of the ER.


Brain Research | 2012

RGS2 mediates the anxiolytic effect of oxytocin

Naoki Okimoto; Oliver J. Bosch; David A. Slattery; Konstanze Pflaum; Hiroaki Matsushita; Fan Yan Wei; Masayasu Ohmori; Tei Ichi Nishiki; Iori Ohmori; Yuji Hiramatsu; Hideki Matsui; Inga D. Neumann; Kazuhito Tomizawa

The neuropeptide oxytocin (OT) has been shown to exert multiple functions in both males and females, and to play a key role in the regulation of emotionality in the central nervous system (CNS). OT has an anxiolytic effect in the CNS of rodents and humans. However, the molecular mechanisms of this effect are unclear. Here we show that OT induced the expression of regulator of G-protein signaling 2 (RGS2), a regulatory factor for anxiety, in the central amygdala (CeA) of female mice. Bath application of OT increased RGS2 levels in slices of the amygdala of virgin mice. RGS2 levels in the CeA were higher in lactating mice than in virgin mice. In contrast, RGS2 levels in mice that had given birth did not increase when the pups were removed. Acute restraint stress for 4h induced RGS2 expression within the CeA, and local administration of an OT receptor antagonist inhibited this expression. Behavioral experiments revealed that transient restraint stress had an anxiolytic effect in wild-type females, and RGS2 levels in the CeA correlated with the anxiolytic behavior. By contrast, in the OT receptor-deficient mice, restraint stress neither increased RGS2 levels in the CeA nor had an anxiolytic effect. These results suggest that OT displays an anxiolytic effect through the induction of RGS2 expression in the CNS.


RNA | 2016

Evolving specificity of tRNA 3-methyl-cytidine-32 (m3C32) modification: a subset of tRNAsSer requires N6-isopentenylation of A37

Aneeshkumar G. Arimbasseri; James R. Iben; Fan Yan Wei; Keshab Rijal; Kazuhito Tomizawa; Markus Hafner; Richard J. Maraia

Post-transcriptional modifications of anticodon loop (ACL) nucleotides impact tRNA structure, affinity for the ribosome, and decoding activity, and these activities can be fine-tuned by interactions between nucleobases on either side of the anticodon. A recently discovered ACL modification circuit involving positions 32, 34, and 37 is disrupted by a human disease-associated mutation to the gene encoding a tRNA modification enzyme. We used tRNA-HydroSeq (-HySeq) to examine (3)methyl-cytidine-32 (m(3)C32), which is found in yeast only in the ACLs of tRNAs(Ser) and tRNAs(Thr) In contrast to that reported for Saccharomyces cerevisiae in which all m(3)C32 depends on a single gene, TRM140, the m(3)C32 of tRNAs(Ser) and tRNAs(Thr) of the fission yeast S. pombe, are each dependent on one of two related genes, trm140(+) and trm141(+), homologs of which are found in higher eukaryotes. Interestingly, mammals and other vertebrates contain a third homolog and also contain m(3)C at new sites, positions 32 on tRNAs(Arg) and C47:3 in the variable arm of tRNAs(Ser) More significantly, by examining S. pombe mutants deficient for other modifications, we found that m(3)C32 on the three tRNAs(Ser) that contain anticodon base A36, requires N(6)-isopentenyl modification of A37 (i(6)A37). This new C32-A37 ACL circuitry indicates that i(6)A37 is a pre- or corequisite for m(3)C32 on these tRNAs. Examination of the tRNA database suggests that such circuitry may be more expansive than observed here. The results emphasize two contemporary themes, that tRNA modifications are interconnected, and that some specific modifications on tRNAs of the same anticodon identity are species-specific.


Stem Cells Translational Medicine | 2014

Generation of Functional Insulin-Producing Cells From Mouse Embryonic Stem Cells Through 804G Cell-Derived Extracellular Matrix and Protein Transduction of Transcription Factors

Taku Kaitsuka; Hirofumi Noguchi; Nobuaki Shiraki; Takuya Kubo; Fan Yan Wei; Farzana Hakim; Shoen Kume; Kazuhito Tomizawa

Embryonic stem (ES) and induced pluripotent stem (iPS) cells have potential applications to regenerative medicine for diabetes; however, a useful and safe way to generate pancreatic β cells has not been developed. In this study, we tried to establish an effective method of differentiation through the protein transduction of three transcription factors (Pdx1, NeuroD, and MafA) important to pancreatic β cell development. The method poses no risk of unexpected genetic modifications in target cells. Transduction of the three proteins induced the differentiation of mouse ES and mouse iPS cells into insulin‐producing cells. Furthermore, a laminin‐5‐rich extracellular matrix efficiently induced differentiation under feeder‐free conditions. Cell differentiation was confirmed with the expression of the insulin 1 gene in addition to marker genes in pancreatic β cells, the differentiated cells secreted glucose‐responsive C‐peptide, and their transplantation restored normoglycemia in diabetic mice. Moreover, Pdx1 protein transduction had facilitative effects on differentiation into pancreatic endocrine progenitors from human iPS cells. These results suggest the direct delivery of recombinant proteins and treatment with laminin‐5‐rich extracellular matrix to be useful for the generation of insulin‐producing cells.

Collaboration


Dive into the Fan Yan Wei's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge