Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fang-Hao Wan is active.

Publication


Featured researches published by Fang-Hao Wan.


Environmental Entomology | 2006

Transmission of Bt Toxin to the Predator Propylaea japonica (Coleoptera: Coccinellidae) Through Its Aphid Prey Feeding on Transgenic Bt Cotton

Gui-Fen Zhang; Fang-Hao Wan; Gábor L. Lövei; Wanxue Liu; Jianying Guo

Abstract Laboratory feeding experiments using transgenic Bacillus thuringiensis (Bt) cotton plants were carried out to evaluate the transmission of Bt toxin among trophic levels and the effects of Bt-fed herbivorous prey on the coccinellid predator Propylaea japonica (Thunberg). The experimental host plants were transgenic Bt-expressing cotton cultivars, NuCOTN 33B and GK-12 and one corresponding untransformed isogenic (non-Bt) cultivar. The herbivorous prey, cotton aphid Aphis gossypii Glover, was not sensitive to Bt toxin. Trace amounts of Bt toxins (6.0 ng/g fresh mass [FM] in GK-12, 4.0 ng/g FM in NuCOTN 33B) were detected in A. gossypii feeding on Bt cotton cultivars. Bt toxin was detected in ladybirds preying on Bt-fed aphids, and its quantity increased as the predatory period extended (5–20 d). Small amounts of Bt toxin was also found in newly hatched, unfed coccinellid larvae when their parents fed on NuCOTN 33B-reared aphids (15.0 ng/g FM), but not when the parents were fed on GK-12–reared prey. In experiments assessing life history consequences, mortality was low (mean = 7.9%), confirming that the rearing methods were appropriate. There were no distinct differences in preimaginal mortality between predators reared on Bt-fed or Bt-free aphids. The preimaginal stages of the ladybird beetles developed faster when reared on prey fed on either Bt-cotton cultivar than those fed control prey. There was a trend of more adult malformations when the predator was fed with prey from one (GK-12) but not the other of the Bt cotton cultivars than on control prey. There were no significant differences in the preovipositing period or in fecundity. Ladybird beetles preying on Bt-reared aphids matured faster and mated more frequently than those fed on Bt-free aphids. These results indicate that Bt toxin expressed in transgenic cotton cultivars can be transmitted to a higher trophic level through a nontarget pest insect and may alter the biology and behavior of a predatory ladybird. Further work should evaluate the possible long-term, sublethal impacts on the agroenvironment under field conditions.


Entomologia Experimentalis Et Applicata | 2007

Detection of Bemisia tabaci remains in predator guts using a sequence-characterized amplified region marker

Gui-Fen Zhang; Zhi-Chuang Lü; Fang-Hao Wan

Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) B biotype is an invasive species (biotype) in China. In order to understand the role that native natural enemies might play in its control, techniques were developed for detecting B. tabaci DNA within the gut of predators. A species‐specific DNA fragment, ca. 350 bp, was identified by random amplified polymorphic DNA analysis. This fragment was absent in other closely related or co‐occurring prey species, cotton, and other select predator species. After cloning and sequencing the fragment, one pair of sequence‐characterized amplified region (SCAR) primers was developed, which amplified a single band of 240 bp. Specificity tests performed with the primers showed the presence of the 240‐bp band for B. tabaci in all developmental stages and both sexes, in adult Propylaea japonica (Thunberg) (Coleoptera: Coccinellidae) fed on B. tabaci nymphs in the laboratory, and in predators collected in cotton fields. Following consumption of a single red‐eyed B. tabaci nymph, prey DNA was detectable in 100% of P. japonica at t = 0, decreasing to 20% after 12 h of digestion, and no B. tabaci DNA detected at t = 24 h. In total, we analyzed the gut contents of 185 field‐collected predators, representing four different orders. All nine field‐collected predator species (namely, P. japonica, Harmonia axyridis, Scymnus hoffmanni, Coccinella septempunctata, Orius sauteri, Chrysopa pallens, Chrysopa formosa, Erigonnidium graminicolum, and Neoscona doenitzi) contained DNA from B. tabaci and are assumed predators of this pest insect. Overall, the B. tabaci was eaten by more than 50% of field‐collected predator individuals, including larvae of the coccinellids (P. japonica and H. axyridis) and lacewings (C. pallens and C. formosa) and adults of O. sauteri and the spiders (E. graminicolum and N. doenitzi). There was a trend of a higher percentage of larval than adult coccinellids and lacewings that preyed on B. tabaci in the field. This study provides a framework for the future use of molecular gut content analysis in arthropod conservation ecology and food web research, with considerable potential for quantifying threats to invasive or endemic pest species in China and elsewhere.


PLOS ONE | 2012

Shifting preference between oviposition vs. host-feeding under changing host densities in two aphelinid parasitoids.

Nian-wan Yang; Lu-Lu Ji; Gábor L. Lövei; Fang-Hao Wan

Destructive host-feeding is common in hymenopteran parasitoids. Such feeding may be restricted to host stages not preferred for oviposition. However, whether this is a fixed strategy or can vary according to resource levels or parasitoid needs is less clear. We tested the trade-off between host feeding and oviposition on two whitefly parasitoids under varying host densities. Females of two aphelinid parasitoids, Eretmocerus hayati and Encarsia sophia were exposed to nine different densities of their whitefly host, Bemisia tabaci, in single-instar tests to identify their functional response. Mixed-instar host choice tests were also conducted by exposing whiteflies at four densities to the parasitoids. We hypothesized that the parasitoid females can detect different host densities, and decide on oviposition vs. host-feeding accordingly. The results showed that both Er. hayati and En. sophia females tended to increase both oviposition and host-feeding with increased host density within a certain range. Oviposition reached a plateau at lower host density than host-feeding in Er. hayati, while En. sophia reached its oviposition plateau at higher densities. At low densities, Er. hayati parasitized most on first and second (the optimal ones), and fed most on third nymphal instars (the suboptimal one) of the whitefly host as theory predicts, while at high densities, both parasitism and host-feeding occurred on first and second instars which are preferred for oviposition. En. sophia parasitized most on third and fourth (the optimal ones), while fed on first instars (the suboptimal one) at low densities, and utilized third and fourth instars for both at high densities. In conclusion, oviposition vs. host-feeding strategy of parasitoid females was found to vary at different host densities. The balance between reserving optimal hosts for oviposition or using them for host-feeding depended on parasitoid life history and the availability of host resources.


Environmental Entomology | 2008

Tri-trophic interactions between Bt cotton, the herbivore Aphis gossypii Glover (Homoptera: Aphididae), and the predator Chrysopa pallens (Rambur) (Neuroptera: Chrysopidae).

Jianying Guo; Fang-Hao Wan; Liang Dong; Gábor L. Lövei; Zhao-Jun Han

Abstract Tri-trophic impacts of transgenic Bacillus thuringiensis (Bt) cotton GK12 and NuCOTN 99B were studied using a predator, the great lacewing Chrysopa pallens (Rambur), and its prey, the cotton aphid Aphis gossypii Glover, in laboratory feeding experiments. The parental nontransgenic cotton cultivar of GK12 was used as control. The predator was fed with uniform (aphids from a single cultivar) or mixed prey (aphids from the three cotton cultivars provided on alternate days). Mortality and development of the immature stages, pupal body mass, adult sex ratio, fecundity, and egg viability of C. pallens were measured. When fed GK12-originated aphid prey, pupal body mass of C. pallens was significantly higher than that of the control, more females emerged, and these females laid significantly more eggs. Other parameters were not impacted. Females emerging from larvae maintained on NuCOTN 99B-originated prey laid fewer eggs than those maintained on GK12. Other measurements did not differ significantly between the two Bt cotton cultivars. Compared with the control, mixed feeding significantly prolonged pupal development time and increased pupal body mass and percentage of females but did not affect other parameters. These results indicate that C. pallens is sensitive to aphid prey from different cotton cultivars. Transgenic Bt cotton GK12-originated aphid prey has no adverse impact on survival, development, and fecundity of C. pallens. Between the two Bt cotton cultivars, NuCOTN 99B-originated aphid prey provided to C. pallens in the larval stage may lower female fecundity. Mixed feeding of C. pallens with the two Bt cotton–originated prey and non-Bt prey may have some adverse impacts on pupal development.


Journal of Insect Science | 2014

Trade-offs between survival, longevity, and reproduction, and variation of survival tolerance in Mediterranean Bemisia tabaci after temperature stress

Zhi-Chuang Lü; Yan-Min Wang; Shao-Guang Zhu; Hao Yu; Jian-Ying Guo; Fang-Hao Wan

Abstract The invasive Mediterranean Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) has emerged as one of the most common agricultural pests in the world. In the present study, we examined the cross-tolerance, fitness costs, and benefits of thermal tolerance and the variation in the responses of life history traits after heat-shock selection. The results showed that survival and longevity of Mediterranean B. tabaci were decreased significantly after direct or cross temperature stress and that the number of eggs per female was not reduced significantly. Furthermore, heat-shock selection dramatically increased the survival of Mediterranean B. tabaci within two generations, and it did not significantly affect the egg number per female within five generations. These results indicated that there was a trade-off between survival, longevity, and reproduction in Mediterranean B. tabaci after temperature stress. The improvement in reproduction was costly in terms of decreased survival and longevity, and there was a fitness consequence to temperature stress. In addition, heat tolerance in Mediterranean B. tabaci increased substantially after selection by heat shock, indicating a considerable variation for survival tolerance in this species. This information could help us better understand the thermal biology of Mediterranean B. tabaci within the context of climate change.


PLOS ONE | 2017

Selection and validation of reference genes for qRT-PCR analysis during biological invasions: The thermal adaptability of Bemisia tabaci MED

Tian-Mei Dai; Zhi-Chuang Lü; Wanxue Liu; Fang-Hao Wan

The Bemisia tabaci Mediterranean (MED) cryptic species has been rapidly invading to most parts of the world owing to its strong ecological adaptability, which is considered as a model insect for stress tolerance studies under rapidly changing environments. Selection of a suitable reference gene for quantitative stress-responsive gene expression analysis based on qRT-PCR is critical for elaborating the molecular mechanisms of thermotolerance. To obtain accurate and reliable normalization data in MED, eight candidate reference genes (β-act, GAPDH, β-tub, EF1-α, GST, 18S, RPL13A and α-tub) were examined under various thermal stresses for varied time periods by using geNorm, NormFinder and BestKeeper algorithms, respectively. Our results revealed that β-tub and EF1-α were the best reference genes across all sample sets. On the other hand, 18S and GADPH showed the least stability for all the samples studied. β-act was proved to be highly stable only in case of short-term thermal stresses. To our knowledge this was the first comprehensive report on validation of reference genes under varying temperature stresses in MED. The study could expedite particular discovery of thermotolerance genes in MED. Further, the present results can form the basis of further research on suitable reference genes in this invasive insect and will facilitate transcript profiling in other invasive insects.


Pest Management Science | 2014

Asymmetric consequences of host plant occupation on the competition between the whiteflies Bemisia tabaci cryptic species MEAM1 and Trialeurodes vaporariorum (Hemiptera: Aleyrodidae)

Gui-Fen Zhang; Gábor L. Lövei; Man Hu; Fang-Hao Wan

BACKGROUND The two common whitefly species, Bemisia tabaci (Gennadius) MEAM1 and Trialeurodes vaporariorum (Westwood), often co-occur on their host plants. The effect of host plant occupation by one species on later-arriving conspecific individuals or on the other competing species was examined. RESULTS Resource preoccupied by T. vaporariorum had mostly negative effects on the life history parameters of later-arriving conspecifics. Red-eyed nymph and immature survival of T. vaporariorum decreased when resource was preoccupied by conspecifics, irrespective of the previous occupation scenario. However, resource preoccupied by T. vaporariorum had only minor detrimental effects on the performance of later-arriving B. tabaci MEAM1. In the opposite colonisation sequence, previous occupation by B. tabaci MEAM1 had no significant effects on the life history parameters of later-arriving conspecifics, but severe detrimental effects were observed on the performance of later-arriving T. vaporariorum. Total immature survival of T. vaporariorum decreased in both weak and strong previous occupation situations by B. tabaci MEAM1. CONCLUSION The interspecific interactions between B. tabaci MEAM1 and T. vaporariorum were asymmetric, with B. tabaci MEAM1 being the superior competitor. This superiority could partially explain the rapid spread of B. tabaci MEAM1 in China.


Florida Entomologist | 2014

Evaluation of Endogenous Reference Genes of Bactrocera (Tetradacus) minax by Gene Expression Profiling under Various Experimental Conditions

Zhi-Chuang Lü; Liu-Hao Wang; Rui-Lin Dai; Gui-Fen Zhang; Jian-Ying Guo; Fang-Hao Wan

Abstract Quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) is widely used for gene expression analysis in living organisms, and stably expressed endogenous reference genes are needed to obtain accurate results. Some commonly used reference genes varied among different experimental treatments. To obtain suitable reference gene for specific experimental conditions, the stability of 10 reference genes of Bactrocera (Tetradacus) minax (Enderlein) were evaluated in various development stages, and under temperatureand &ggr;-irradiation-stress conditions by semi-quantitative PCR. The present results indicated that the most stable candidate reference gene was RPL32 in eggs, 3rd instars, 1-, 90- and 160-day-pupae and newly emerged female and male adults (< 24 h), and under different stress conditions, i.e., 35 °C temperature stress for 0 h, 1 h, 3 h and 5 h, and 4 °C temperature stress for 0 h, 12 h, 36 h, 48 h and 60 h. GAPDH, G6PDH and RPL32 were ideal candidate endogenous genes under 35 °C temperature stress for 0 h, 1 h, 3 h and 5 h, and under 4 °C temperature stress for 0 h, 12 h, 36 h, 48 h and 60 h, and under a &Ggr; irradiation stress of 90 Gy. These results provide basic information for future studies of gene expression in B. minax, and should serve as a resource to screen reference genes for gene expression studies in other insect species.


PLOS ONE | 2014

Transient receptor potential is essential for high temperature tolerance in invasive Bemisia tabaci Middle East Asia minor 1 cryptic species.

Zhi-Chuang Lü; Qian Li; Wanxue Liu; Fang-Hao Wan

Temperature is an important factor in affecting population dynamics and diffusion distribution of organisms. Alien species can successfully invade and colonize to various temperature environments, and one of important reasons is that alien species have a strong resistance to stress temperature. Recently, researchers have focused on the mechanisms of temperature sensing to determine the sensing and regulation mechanisms of temperature adaptation. The transient receptor potential (TRP) is one of the key components of an organism’s temperature perception system. TRP plays important roles in perceiving temperature, such as avoiding high temperature, low temperature and choosing the optimum temperature. To assess high temperature sensation and the heat resistance role of the TRP gene, we used 3′ and 5′ rapid-amplification of cDNA ends to isolate the full-length cDNA sequence of the TRP gene from Bemisia tabaci (Gennadius) MEAM1 (Middle East Asia Minor 1), examined the mRNA expression profile under various temperature conditions, and identified the heat tolerance function. This is the first study to characterize the TRP gene of invasive B. tabaci MEAM1 (MEAM1 BtTRP). The full-length cDNA of MEAM1 BtTRP was 3871 bp, and the open reading frames of BtTRP was 3501 bp, encoding 1166 amino acids. Additionally, the BtTRP mRNA expression level was significantly increased at 35°C. Furthermore, compared with control treatments, the survival rate of B. tabaci MEAM1 adults was significantly decreased under high temperature stress conditions after feeding with dsRNA BtTRP. Collectively, these results showed that MEAM1 BtTRP is a key element in sensing high temperature and plays an essential role in B. tabaci MEAM1 heat tolerance ability. Our data improved our understanding of the mechanism of temperature sensation in B. tabaci MEAM1 at the molecular level and could contribute to the understanding of the thermal biology of B. tabaci MEAM1 within the context of global climate change.


Journal of Insect Science | 2014

Increased Survival and Prolonged Longevity Mainly Contribute to the Temperature-Adaptive Evolutionary Strategy in Invasive Bemisia tabaci (Hemiptera: Aleyrodidae) Middle East Asia Minor 1

Zhi-Chuang Lü; Qing-Lei Gao; Fang-Hao Wan; Hao Yu; Jian-Ying Guo

ABSTRACT. With increasing global climate change, analyses of stress-inducing conditions have important significance in ecological adaptation and the biological distribution of species. To reveal the difference in temperature-adaptive strategy between Turpan and Beijing populations of Bemisia tabaci (Gennadius) Middle East Asia Minor 1 (MEAM1) under high-temperature stress conditions, we compared thermal tolerance and life history traits between Beijing and Turpan populations of MEAM1 after exposure to different heat shock treatments for different times. The experimental design reflected the nature of heat stress conditions suffered by MEAM1. The results showed that eggs, red-eyed pupae, and adults of the Turpan population were more heat tolerant than those of the Beijing population under the same stress conditions. Additionally, it was found that longevity and F1 adult survival rate were significantly higher in the Turpan population than in the Beijing population after heat shock stress, but egg number and F1 female ratio were not significantly different between Turpan population and Beijing population. Overall, it was suggested that heat tolerance and longevity traits were the most relevant for climate characteristics and not reproductive traits, and improved heat tolerance and prolonged longevity were important adaptive strategies that helped MEAM1 to survive in harsh high-temperature conditions such as Turpan arid desert climate. The present results provided further insight into the modes of heat tolerance and the ways in which survival and longevity traits respond to environmental selection pressures.

Collaboration


Dive into the Fang-Hao Wan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tian-Mei Dai

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Ai-Lian Li

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Nian-Wan Yang

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Xiao-Yue Hong

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Zhao-Jun Han

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Wheatley

James Hutton Institute

View shared research outputs
Top Co-Authors

Avatar

E. M. G. Fontes

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Researchain Logo
Decentralizing Knowledge