Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fang Miao is active.

Publication


Featured researches published by Fang Miao.


Natural Product Research | 2011

Structural modification of sanguinarine and chelerythrine and their antibacterial activity.

Fang Miao; Xin-Juan Yang; Le Zhou; Hai-Jun Hu; Feng Zheng; Xu-Dong Ding; Dong-Mei Sun; Chun-Dong Zhou; Wei Sun

In this study, five derivatives of sanguinarine (1) and chelerythrine (2) were prepared, with 1 and 2 as starting materials, by reduction, oxidation and nucleophilic addition to the iminium bond C=N+. The structures of all compounds were elucidated on account of their MS, 1H-NMR and 13C-NMR data. The antibacterial activities of all compounds were screened, using Staphylococcus aureus, Escherichia coli, Aeromonas hydrophila and Pasteurella multocida as test bacteria. The minimum bacteriostatic concentration and minimum bactericidal concentration of the active compounds were determined by the turbidity method. The structure–activity relationships of 1 and 2 were discussed. The results showed that 1, 2 and their pseudoalcoholates were found to be potent inhibitors to S. aureus, E. coli and A. hydrophila, while the other derivatives were found to be inactive. The pseudoalcoholates might be the prodrugs of 1 and 2. The iminium bond in the molecules of 1 or 2 was the determinant for antibacterial activity, and the substituents at the 7 and 8 positions influenced the antibacterial activities of 1 and 2 against different bacteria.


Molecules | 2012

In Vitro Antifungal Activity of Sanguinarine and Chelerythrine Derivatives against Phytopathogenic Fungi

Xin-Juan Yang; Fang Miao; Yao Yao; Fangjun Cao; Rui Yang; Yanni Ma; Bao-Fu Qin; Le Zhou

In order to understand the antifungal activity of some derivatives of sanguinarine (S) and chelerythrine (C) and their structure-activity relationships, sixteen derivatives of S and C were prepared and evaluated for in vitro antifungal activity against seven phytopathogenic fungi by the mycelial growth rate method. The results showed that S, C and their 6-alkoxy dihydro derivatives S1–S4, C1–C4 and 6-cyanodihydro derivatives S5, C5 showed significant antifungal activity at 100 µg/mL against all the tested fungi. For most tested fungi, the median effective concentrations of S, S1, C and C1 were in a range of 14–50 µg/mL. The structure-activity relationship showed that the C=N+ moiety was the determinant for the antifungal activity of S and C. S1–S5 and C1–C5 could be considered as the precursors of S and C, respectively. Thus, the present results strongly suggested that S and C or their derivatives S1–S5 and C1–C5 should be considered as good lead compounds or model molecules to develop new anti-phytopathogenic fungal agents.


Molecules | 2013

2-(Substituted phenyl)-3,4-dihydroisoquinolin-2-iums as Novel Antifungal Lead Compounds: Biological Evaluation and Structure-Activity Relationships

Zhe Hou; Rui Yang; Li-Fei Zhu; Fang Miao; Xin-Juan Yang; Le Zhou

The title compounds are a class of structurally simple analogues of quaternary benzo[c]phenanthridine alkaloids (QBAs). In order to develop novel QBA-like antifungal drugs, in this study, 24 of the title compounds with various substituents on the N-phenyl ring were evaluated for bioactivity against seven phytopathogenic fungi using the mycelial growth rate method and their SAR discussed. Almost all the compounds showed definite activities in vitro against each of the test fungi at 50 μg/mL and a broad antifungal spectrum. In most cases, the mono-halogenated compounds 2–12 exhibited excellent activities superior to the QBAs sanguinarine and chelerythrine. Compound 8 possessed the strongest activities on each of the fungi with EC50 values of 8.88–19.88 µg/mL and a significant concentration-dependent relationship. The SAR is as follows: the N-phenyl group is a high sensitive structural moiety for the activity and the characteristics and position of substituents intensively influence the activity. Generally, electron-withdrawing substituents remarkably enhance the activity while electron-donating substituents cause a decrease of the activity. In most cases, ortha- and para-halogenated isomers were more active than the corresponding m-halogenated isomers. Thus, the title compounds emerged as promising lead compounds for the development of novel biomimetic antifungal agrochemicals. Compounds 8 and 2 should have great potential as new broad spectrum antifungal agents for plant protection.


Molecules | 2012

Isolation, Identification and Antimicrobial Activities of Two Secondary Metabolites of Talaromyces verruculosus

Fang Miao; Rui Yang; Dongdong Chen; Ying Wang; Bao-Fu Qin; Xin-Juan Yang; Le Zhou

From the ethyl acetate extract of the culture broth of Talaromyces verruculosus, a rhizosphere fungus of Stellera chamaejasme L., (−)-8-hydroxy-3-(4-hydroxypentyl)-3,4-dihydroisocoumarin (1) and (E)-3-(2,5-dioxo-3-(propan-2-ylidene)pyrrolidin-1-yl)acrylic acid (2) were isolated and evaluated for their antimicrobial activities. Their structures were elucidated by UV, IR, MS, 1H-NMR, 13C-NMR and 2D NMR spectra. Compound 1 exhibited the significant activities in vitro against two strains of bacteria and four strains of fungi. Compound 2 gave slight activities on the fungi at 100 µg mL−1, but no activities on the bacteria. Compound 1 should be considered as a new lead or model compound to develop new isocoumarin antimicrobial agents.


Journal of Agricultural and Food Chemistry | 2016

Design, Synthesis, and Structure–Activity Relationship of New 2-Aryl-3,4-dihydro-β-carbolin-2-ium Salts as Antifungal Agents

Zhe Hou; Li-Fei Zhu; Xin-chi Yu; Ma-Qiang Sun; Fang Miao; Le Zhou

Twenty-two 2-aryl-9-methyl-3,4-dihydro-β-carbolin-2-ium bromides along with four 9-demethylated derivatives were synthesized and characterized by spectroscopic analysis. By using the mycelium growth rate method, the compounds were evaluated for antifungal activities in vitro against six plant pathogenic fungi, and structure-activity relationships (SAR) were derived. Almost all of the compounds showed obvious inhibition activity on each of the fungi at 150 μM. For all of the fungi, 10 of the compounds showed average inhibition rates of >80% at 150 μM, and most of their EC50 values were in the range of 2.0-30.0 μM. SAR analysis showed that the substitution pattern of the N-aryl ring significantly influences the activity; N9-alkylation improves the activity, whereas aromatization of ring-C reduces the activity. It was concluded that the present research provided a series of new 2-aryl-9-alkyl-3,4-dihydro-β-carbolin-2-iums with excellent antifungal potency and structure optimization design for the development of new carboline antifungal agents.


Fitoterapia | 2010

Two new bufadienolides from the rhizomes of Helleborus thibetanus Franch.

Jian Yang; Yan-hong Zhang; Fang Miao; Le Zhou; Wei Sun

Two new bufadienolides, named tigencaoside A(1) and tigencaoside B(2), were isolated from the rhizomes of Helleborus thibetanus Franch., along with two known bufadienolides, hellebrigenin (3) and 5beta,14beta-dihydroxy-19-oxo-3beta-[(alpha-L-rhamnopyranosyl)oxy]bufa-20,22-dienolide (4). Their structures were elucidated on the basis of extensive spectroscopic analysis. Two new compounds were evaluated for their cytotoxic activities against four strains of cultured tumor cells.


PLOS ONE | 2017

Bioactivity and structure-activity relationship of cinnamic acid esters and their derivatives as potential antifungal agents for plant protection

Kun Zhou; Dongdong Chen; Bin Li; Bingyu Zhang; Fang Miao; Le Zhou

A series of cinnamic acid esters and their derivatives were synthesized and evaluated for antifungal activities in vitro against four plant pathogenic fungi by using the mycelium growth rate method. Structure−activity relationship was derived also. Almost all of the compounds showed some inhibition activity on each of the fungi at 0.5 mM. Eight compounds showed the higher average activity with average EC50 values of 17.4–28.6 μg/mL for the fungi than kresoxim-methyl, a commercial fungicide standard, and ten compounds were much more active than commercial fungicide standards carbendazim against P. grisea or kresoxim-methyl against both P. grisea and Valsa mali. Compounds C1 and C2 showed the higher activity with average EC50 values of 17.4 and 18.5 μg/mL and great potential for development of new plant antifungal agents. The structure−activity relationship analysis showed that both the substitution pattern of the phenyl ring and the alkyl group in the alcohol moiety significantly influences the activity. There exists complexly comprehensive effect between the substituents on the phenyl ring and the alkyl group in the alcohol moiety on the activity. Thus, cinnamic acid esters showed great potential the development of new antifungal agents for plant protection due to high activity, natural compounds or natural compound framework, simple structure, easy preparation, low-cost and environmentally friendly.


Chemical & Pharmaceutical Bulletin | 2015

Ethyl Cinnamate Derivatives as Promising High-Efficient Acaricides against Psoroptes cuniculi : Synthesis, Bioactivity and Structure–Activity Relationship

Bingyu Zhang; Chao Lv; Weibo Li; Zhiming Cui; Dongdong Chen; Fangjun Cao; Fang Miao; Le Zhou

This paper reported the synthesis, structure-activity relationship (SAR) and acaricidal activity in vitro against Psoroptes cuniculi, a mange mite, of 25 ethyl cinnamate derivatives. All target compounds were synthesized and elucidated by means of MS, (1)H- and (13)C-NMR analysis. The results showed that 24 out of 25 tested compounds at 1.0 mg/mL demonstrated acaricidal activity in varying degrees. Among them, 6, 15, 26, 27 and 30 showed significant activity with median lethal concentration values (LC50) of 89.3, 119.0, 39.2, 29.8 and 41.2 µg/mL, respectively, which were 2.1- to 8.3-fold the activity of ivermectin (LC50=247.4 µg/mL), a standard drug in the treatment of Psoroptes cuniculi. Compared with ivermectin, with a median lethal time value (LT50) of 8.9 h, 27 and 30 showed smaller LT50 values of 7.9 and 1.3 h, respectively, whereas 6, 15 and 26 showed slightly larger LT50 values of 10.6, 11.0 and 10.4 h at 4.5 µmol/mL. SARs showed that the presence of o-NO2 or m-NO2 on the benzene ring significantly improved the activity, whereas the introduction of a hydroxy, methoxy, acetoxy, methylenedioxy, bromo or chloro group reduced the activity. (E)-Cinnamates were more effective than their (Z)-isomer. Nevertheless, the carbon-carbon double bond in the acrylic ester moiety was proven not to be essential to improve the activity of cinnamic acid esters. Thus, the results strongly indicate that cinnamate derivatives, especially their dihydro derivatives, should be promising candidates or lead compounds for the development of novel acaricides for the effective control of animal or human acariasis.


Journal of Asian Natural Products Research | 2009

Further studies on the chemical constituents of Chinese folk medicine Gentiana apiata N.E. Br.

Le Zhou; Xing-Ke Li; Fang Miao; Ming-Li Yang; Xin-Juan Yang; Wei Sun; Jian Yang

One new secoiridoid glycoside with conjugated diene, named 3-epi-swertiajaposide C (1), was isolated from the whole plants of Gentiana apiata N.E. Br., together with 11 known compounds, 7-deoxyloganic acid (2), isoorientin (3), gentiopicroside (4), silybin B (5), swertiamarin (6), asystasioside A (7), 6′-O-β-d-glucopyranosylgentiopicroside (8), umbelliferone (9), oleanolic acid (10), kaempferol (11), and β-sitosterol (12). The structure of the new compound (1) was elucidated on the basis of spectroscopic evidence including UV, IR, MS, NMR, HMBC, HMQC, and NOESY. Compounds 1, 2, 5, 6, 8, 9, and 11 were found in this plant for the first time. Moreover, silybin B (5) was isolated from the other plants besides Silybum marianum (L.) Gaertn for the first time by the present study.


International Journal of Molecular Sciences | 2014

New Dihydro-β-agarofuran Sesquiterpenes from Parnassia wightiana Wall: Isolation, Identification and Cytotoxicity against Cancer Cells

Chao Lv; Zuo-Lue Zheng; Fang Miao; Hui-Ling Geng; Le Zhou; La-Ping Liu

Five new (4–8) and three known (1–3) dihydro-β-agarofuran sesquiterpene polyesters were isolated from the whole plants of Parnassia wightiana. The structures of all compounds were elucidated through spectroscopic analysis including 2D-NMR and HR-MS. The absolute configuration of these compounds was established by X-ray diffraction analysis, comparison of NOESY spectra and biogenetic means. The cytotoxities of compounds 2–8 were evaluated in vitro against HL-60, SMMC-7721, A549, MCF-7 and SW480 cell lines. Compounds 5–7 exhibited the highest activities with IC50 values of 11.8–30.1 μM in most cases. The SAR revealed that the introduction of hydroxyl group was able to significantly improve the activities of the compounds for most of the cell lines.

Collaboration


Dive into the Fang Miao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge