Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fang Yun Lim is active.

Publication


Featured researches published by Fang Yun Lim.


Methods in Enzymology | 2012

Toward awakening cryptic secondary metabolite gene clusters in filamentous fungi.

Fang Yun Lim; James F. Sanchez; Clay C. C. Wang; Nancy P. Keller

Mining for novel natural compounds is of eminent importance owing to the continuous need for new pharmaceuticals. Filamentous fungi are historically known to harbor the genetic capacity for an arsenal of natural compounds, both beneficial and detrimental to humans. The majority of these metabolites are still cryptic or silent under standard laboratory culture conditions. Mining for these cryptic natural products can be an excellent source for identifying new compound classes. Capitalizing on the current knowledge on how secondary metabolite gene clusters are regulated has allowed the research community to unlock many hidden fungal treasures, as described in this chapter.


Applied and Environmental Microbiology | 2012

Genome-Based Cluster Deletion Reveals an Endocrocin Biosynthetic Pathway in Aspergillus fumigatus

Fang Yun Lim; Yanpeng Hou; Yiming Chen; Jee-Hwan Oh; Inhyung Lee; Tim S. Bugni; Nancy P. Keller

ABSTRACT Endocrocin is a simple anthraquinone frequently identified in extracts of numerous fungi. Several biosynthetic schemes for endocrocin synthesis have been hypothesized, but to date, no dedicated secondary metabolite gene cluster that produces this polyketide as its major metabolite has been identified. Here we describe our biosynthetic and regulatory characterization of the endocrocin gene cluster in Aspergillus fumigatus. This is the first report of this anthraquinone in this species. The biosynthetic genes required for endocrocin production are regulated by the global regulator of secondary metabolism, LaeA, and encode an iterative nonreducing polyketide synthase (encA), a physically discrete metallo-β-lactamase type thioesterase (encB), and a monooxygenase (encC). Interestingly, the deletion of a gene immediately adjacent to encC, termed encD and encoding a putative 2-oxoglutarate-Fe(II) type oxidoreductase, resulted in higher levels of endocrocin production than in the wild-type strain, whereas overexpression of encD eliminated endocrocin accumulation. We found that overexpression of the encA transcript resulted in higher transcript levels of encA-D and higher production of endocrocin. We discuss a model of the enc cluster as one evolutionary origin of fungal anthraquinones derived from a nonreducing polyketide synthase and a discrete metallo-β-lactamase-type thioesterase.


PLOS Pathogens | 2013

Low-Volume Toolbox for the Discovery of Immunosuppressive Fungal Secondary Metabolites

Erwin Berthier; Fang Yun Lim; Qing Deng; Chun-Jun Guo; Dimitrios P. Kontoyiannis; Clay C. C. Wang; Julie Rindy; David J. Beebe; Anna Huttenlocher; Nancy P. Keller

The secondary metabolome provides pathogenic fungi with a plethoric and versatile panel of molecules that can be deployed during host ingress. While powerful genetic and analytical chemistry methods have been developed to identify fungal secondary metabolites (SMs), discovering the biological activity of SMs remains an elusive yet critical task. Here, we describe a process for identifying the immunosuppressive properties of Aspergillus SMs developed by coupling a cost-effective microfluidic neutrophil chemotaxis assay with an in vivo zebrafish assay. The microfluidic platform allows the identification of metabolites inhibiting neutrophil recruitment with as little as several nano-grams of compound in microliters of fluid. The zebrafish assay demonstrates a simple and accessible approach for performing in vivo studies without requiring any manipulation of the fish. Using this methodology we identify the immunosuppressive properties of a fungal SM, endocrocin. We find that endocrocin is localized in Aspergillus fumigatus spores and its biosynthesis is temperature-dependent. Finally, using the Drosophila toll deficient model, we find that deletion of encA, encoding the polyketide synthase required for endocrocin production, yields a less pathogenic strain of A. fumigatus when spores are harvested from endocrocin permissive but not when harvested from endocrocin restrictive conditions. The tools developed here will open new “function-omic” avenues downstream of the metabolomics, identification, and purification phases.


Cellular Microbiology | 2014

Co‐ordination between BrlA regulation and secretion of the oxidoreductase FmqD directs selective accumulation of fumiquinazoline C to conidial tissues in Aspergillus fumigatus

Fang Yun Lim; Brian D. Ames; Christopher T. Walsh; Nancy P. Keller

Aerial spores, crucial for propagation and dispersal of the Kingdom Fungi, are commonly the initial inoculum of pathogenic fungi. Natural products (secondary metabolites) have been correlated with fungal spore development and enhanced virulence in the human pathogen Aspergillus fumigatus but mechanisms for metabolite deposition in the spore are unknown. Metabolomic profiling of A. fumigatus deletion mutants of fumiquinazoline (Fq) cluster genes reveal that the first two products of the Fq cluster, FqF and FqA, are produced to comparable levels in all fungal tissues but the final enzymatically derived product, FqC, predominantly accumulates in the fungal spore. Loss of the sporulation‐specific transcription factor, BrlA, yields a strain unable to produce FqA or FqC. Fluorescence microscopy showed FmqD, the oxidoreductase required to generate FqC, was secreted via the Golgi apparatus to the cell wall in an actin‐dependent manner. In contrast, all other members of the Fq pathway including the putative transporter, FmqE – which had no effect on Fq biosynthesis – were internal to the hyphae. The co‐ordination of BrlA‐mediated tissue specificity with FmqD secretion to the cell wall presents a previously undescribed mechanism to direct localization of specific secondary metabolites to spores of the differentiating fungus.


Environmental Microbiology | 2016

Redundant synthesis of a conidial polyketide by two distinct secondary metabolite clusters in Aspergillus fumigatus

Kurt Throckmorton; Fang Yun Lim; Dimitrios P. Kontoyiannis; Weifa Zheng; Nancy P. Keller

Filamentous fungi are renowned for the production of bioactive secondary metabolites. Typically, one distinct metabolite is generated from a specific secondary metabolite cluster. Here, we characterize the newly described trypacidin (tpc) cluster in the opportunistic human pathogen Aspergillus fumigatus. We find that this cluster as well as the previously characterized endocrocin (enc) cluster both contribute to the production of the spore metabolite endocrocin. Whereas trypacidin is eliminated when only tpc cluster genes are deleted, endocrocin production is only eliminated when both the tpc and enc non-reducing polyketide synthase-encoding genes, tpcC and encA, respectively, are deleted. EncC, an anthrone oxidase, converts the product released from EncA to endocrocin as a final product. In contrast, endocrocin synthesis by the tpc cluster likely results from incomplete catalysis by TpcK (a putative decarboxylase), as its deletion results in a nearly 10-fold increase in endocrocin production. We suggest endocrocin is likely a shunt product in all related non-reducing polyketide synthase clusters containing homologues of TpcK and TpcL (a putative anthrone oxidase), e.g. geodin and monodictyphenone. This finding represents an unusual example of two physically discrete secondary metabolite clusters generating the same natural product in one fungal species by distinct routes.


PLOS Pathogens | 2016

FleA Expression in Aspergillus fumigatus Is Recognized by Fucosylated Structures on Mucins and Macrophages to Prevent Lung Infection

Sheena C. Kerr; Gregory J. Fischer; Meenal Sinha; Orla McCabe; Jonathan M. Palmer; Tsokyi Choera; Fang Yun Lim; Michaela Wimmerová; Stephen D. Carrington; Shaopeng Yuan; Clifford A. Lowell; Stefan Oscarson; Nancy P. Keller; John V. Fahy

The immune mechanisms that recognize inhaled Aspergillus fumigatus conidia to promote their elimination from the lungs are incompletely understood. FleA is a lectin expressed by Aspergillus fumigatus that has twelve binding sites for fucosylated structures that are abundant in the glycan coats of multiple plant and animal proteins. The role of FleA is unknown: it could bind fucose in decomposed plant matter to allow Aspergillus fumigatus to thrive in soil, or it may be a virulence factor that binds fucose in lung glycoproteins to cause Aspergillus fumigatus pneumonia. Our studies show that FleA protein and Aspergillus fumigatus conidia bind avidly to purified lung mucin glycoproteins in a fucose-dependent manner. In addition, FleA binds strongly to macrophage cell surface proteins, and macrophages bind and phagocytose fleA-deficient (∆fleA) conidia much less efficiently than wild type (WT) conidia. Furthermore, a potent fucopyranoside glycomimetic inhibitor of FleA inhibits binding and phagocytosis of WT conidia by macrophages, confirming the specific role of fucose binding in macrophage recognition of WT conidia. Finally, mice infected with ΔfleA conidia had more severe pneumonia and invasive aspergillosis than mice infected with WT conidia. These findings demonstrate that FleA is not a virulence factor for Aspergillus fumigatus. Instead, host recognition of FleA is a critical step in mechanisms of mucin binding, mucociliary clearance, and macrophage killing that prevent Aspergillus fumigatus pneumonia.


BMC Genomics | 2014

Illumina identification of RsrA, a conserved C2H2 transcription factor coordinating the NapA mediated oxidative stress signaling pathway in Aspergillus

Jin Woo Bok; Philipp Wiemann; Graeme S. Garvey; Fang Yun Lim; Brian J. Haas; Jennifer R. Wortman; Nancy P. Keller

BackgroundChemical mutagenesis screens are useful to identify mutants involved in biological processes of interest. Identifying the mutation from such screens, however, often fails when using methodologies involving transformation of the mutant to wild type phenotype with DNA libraries.ResultsHere we analyzed Illumina sequence of a chemically derived mutant of Aspergillus nidulans and identified a gene encoding a C2H2 transcription factor termed RsrA for regulator of stress response. RsrA is conserved in filamentous fungal genomes, and upon deleting the gene in three Aspergillus species (A. nidulans, A. flavus and A. fumigatus), we found two conserved phenotypes: enhanced resistance to oxidative stress and reduction in sporulation processes. For all species, rsrA deletion mutants were more resistant to hydrogen peroxide treatment. In depth examination of this latter characteristic in A. nidulans showed that upon exposure to hydrogen peroxide, RsrA loss resulted in global up-regulation of several components of the oxidative stress metabolome including the expression of napA and atfA, the two bZIP transcription factors mediating resistance to reactive oxygen species (ROS) as well as NapA targets in thioredoxin and glutathione systems. Coupling transcriptional data with examination of ΔrsrAΔatfA and ΔrsrAΔnapA double mutants indicate that RsrA primarily operates through NapA-mediated stress response pathways. A model of RsrA regulation of ROS response in Aspergillus is presented.ConclusionRsrA, found in a highly syntenic region in Aspergillus genomes, coordinates a NapA mediated oxidative response in Aspergillus fungi.


Mbio | 2017

Revitalization of a Forward Genetic Screen Identifies Three New Regulators of Fungal Secondary Metabolism in the Genus Aspergillus

Brandon T. Pfannenstiel; Xixi Zhao; Jennifer R. Wortman; Philipp Wiemann; Kurt Throckmorton; Joseph E. Spraker; Alexandra A. Soukup; Xingyu Luo; Daniel L. Lindner; Fang Yun Lim; Benjamin P. Knox; Brian J. Haas; Gregory J. Fischer; Tsokyi Choera; Robert A. E. Butchko; Jin-Woo Bok; Katharyn J. Affeldt; Nancy P. Keller; Jonathan M. Palmer

ABSTRACT The study of aflatoxin in Aspergillus spp. has garnered the attention of many researchers due to aflatoxin’s carcinogenic properties and frequency as a food and feed contaminant. Significant progress has been made by utilizing the model organism Aspergillus nidulans to characterize the regulation of sterigmatocystin (ST), the penultimate precursor of aflatoxin. A previous forward genetic screen identified 23 A. nidulans mutants involved in regulating ST production. Six mutants were characterized from this screen using classical mapping (five mutations in mcsA) and complementation with a cosmid library (one mutation in laeA). The remaining mutants were backcrossed and sequenced using Illumina and Ion Torrent sequencing platforms. All but one mutant contained one or more sequence variants in predicted open reading frames. Deletion of these genes resulted in identification of mutant alleles responsible for the loss of ST production in 12 of the 17 remaining mutants. Eight of these mutations were in genes already known to affect ST synthesis (laeA, mcsA, fluG, and stcA), while the remaining four mutations (in laeB, sntB, and hamI) were in previously uncharacterized genes not known to be involved in ST production. Deletion of laeB, sntB, and hamI in A. flavus results in loss of aflatoxin production, confirming that these regulators are conserved in the aflatoxigenic aspergilli. This report highlights the multifaceted regulatory mechanisms governing secondary metabolism in Aspergillus. Additionally, these data contribute to the increasing number of studies showing that forward genetic screens of fungi coupled with whole-genome resequencing is a robust and cost-effective technique. IMPORTANCE In a postgenomic world, reverse genetic approaches have displaced their forward genetic counterparts. The techniques used in forward genetics to identify loci of interest were typically very cumbersome and time-consuming, relying on Mendelian traits in model organisms. The current work was pursued not only to identify alleles involved in regulation of secondary metabolism but also to demonstrate a return to forward genetics to track phenotypes and to discover genetic pathways that could not be predicted through a reverse genetics approach. While identification of mutant alleles from whole-genome sequencing has been done before, here we illustrate the possibility of coupling this strategy with a genetic screen to identify multiple alleles of interest. Sequencing of classically derived mutants revealed several uncharacterized genes, which represent novel pathways to regulate and control the biosynthesis of sterigmatocystin and of aflatoxin, a societally and medically important mycotoxin. IMPORTANCE In a postgenomic world, reverse genetic approaches have displaced their forward genetic counterparts. The techniques used in forward genetics to identify loci of interest were typically very cumbersome and time-consuming, relying on Mendelian traits in model organisms. The current work was pursued not only to identify alleles involved in regulation of secondary metabolism but also to demonstrate a return to forward genetics to track phenotypes and to discover genetic pathways that could not be predicted through a reverse genetics approach. While identification of mutant alleles from whole-genome sequencing has been done before, here we illustrate the possibility of coupling this strategy with a genetic screen to identify multiple alleles of interest. Sequencing of classically derived mutants revealed several uncharacterized genes, which represent novel pathways to regulate and control the biosynthesis of sterigmatocystin and of aflatoxin, a societally and medically important mycotoxin.


bioRxiv | 2018

An LaeA- and BrlA-Dependent Cellular Network Governs Tissue-Specific Secondary Metabolism in the Human Pathogen Aspergillus fumigatus

Abigail L. Lind; Fang Yun Lim; Alexandra A. Soukup; Nancy P. Keller; Antonis Rokas

Filamentous fungi produce a spectacular variety of small molecules, commonly known as secondary or specialized metabolites (SMs), which are critical to their ecologies and lifestyles (e.g., penicillin, cyclosporine, and aflatoxin). Elucidation of the regulatory network that governs SM production is a major question of both fundamental and applied research relevance. To shed light on the relationship between regulation of development and regulation of secondary metabolism in filamentous fungi, we performed global transcriptomic and metabolomic analyses on mutant and wild-type strains of the human pathogen Aspergillus fumigatus under conditions previously shown to induce the production of both vegetative growth-specific and asexual development-specific SMs. We find that the gene brlA, previously known as a master regulator of asexual development, is also a master regulator of secondary metabolism and other cellular processes. We further show that brlA regulation of SM is mediated by laeA, one of the master regulators of SM, providing a framework for the cellular network regulating not only fungal SMs but diverse cellular processes linked to virulence of this pathogen. ABSTRACT Biosynthesis of many ecologically important secondary metabolites (SMs) in filamentous fungi is controlled by several global transcriptional regulators, like the chromatin modifier LaeA, and tied to both development and vegetative growth. In Aspergillus molds, asexual development is regulated by the BrlA > AbaA > WetA transcriptional cascade. To elucidate BrlA pathway involvement in SM regulation, we examined the transcriptional and metabolic profiles of ΔbrlA, ΔabaA, and ΔwetA mutant and wild-type strains of the human pathogen Aspergillus fumigatus. We find that BrlA, in addition to regulating production of developmental SMs, regulates vegetative SMs and the SrbA-regulated hypoxia stress response in a concordant fashion to LaeA. We further show that the transcriptional and metabolic equivalence of the ΔbrlA and ΔlaeA mutations is mediated by an LaeA requirement preventing heterochromatic marks in the brlA promoter. These results provide a framework for the cellular network regulating not only fungal SMs but diverse cellular processes linked to virulence of this pathogen. IMPORTANCE Filamentous fungi produce a spectacular variety of small molecules, commonly known as secondary or specialized metabolites (SMs), which are critical to their ecologies and lifestyles (e.g., penicillin, cyclosporine, and aflatoxin). Elucidation of the regulatory network that governs SM production is a major question of both fundamental and applied research relevance. To shed light on the relationship between regulation of development and regulation of secondary metabolism in filamentous fungi, we performed global transcriptomic and metabolomic analyses on mutant and wild-type strains of the human pathogen Aspergillus fumigatus under conditions previously shown to induce the production of both vegetative growth-specific and asexual development-specific SMs. We find that the gene brlA, previously known as a master regulator of asexual development, is also a master regulator of secondary metabolism and other cellular processes. We further show that brlA regulation of SM is mediated by laeA, one of the master regulators of SM, providing a framework for the cellular network regulating not only fungal SMs but diverse cellular processes linked to virulence of this pathogen.


Antimicrobial Agents and Chemotherapy | 2017

A cationic polymer that shows high antifungal activity against diverse human pathogens

Leslie A. Rank; Naomi M. Walsh; Runhui Liu; Fang Yun Lim; Jin Woo Bok; Mingwei Huang; Nancy P. Keller; Samuel H. Gellman; Christina M. Hull

ABSTRACT Invasive fungal diseases are generally difficult to treat and often fatal. The therapeutic agents available to treat fungi are limited, and there is a critical need for new agents to combat these deadly infections. Antifungal compound development has been hindered by the challenge of creating agents that are highly active against fungal pathogens but not toxic to the host. Host defense peptides (HDPs) are produced by eukaryotes as a component of the innate immune response to pathogens and have served as inspiration for the development of many new antibacterial compounds. HDP mimics, however, have largely failed to exhibit potent and selective antifungal activity. Here, we present an HDP-like nylon-3 copolymer that is effective against diverse fungi while displaying only mild to moderate toxicity toward mammalian cells. This polymer is active on its own and in synergy with existing antifungal drugs against multiple species of Candida and Cryptococcus, reaching levels of efficacy comparable to those of the clinical agents amphotericin B and fluconazole in some cases. In addition, the polymer acts synergistically with azoles against different species of Aspergillus, including some azole-resistant strains. These findings indicate that nylon-3 polymers are a promising lead for development of new antifungal therapeutic strategies.

Collaboration


Dive into the Fang Yun Lim's collaboration.

Top Co-Authors

Avatar

Nancy P. Keller

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Philipp Wiemann

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Tsokyi Choera

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Alexandra A. Soukup

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Anna Huttenlocher

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin P. Knox

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christina M. Hull

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Clay C. C. Wang

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge