Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fangjian Zhou is active.

Publication


Featured researches published by Fangjian Zhou.


Nature Genetics | 2011

Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder.

Yaoting Gui; Guangwu Guo; Yi Huang; Xueda Hu; Aifa Tang; Shengjie Gao; Renhua Wu; Chao Chen; Xianxin Li; Liang Zhou; Minghui He; Zesong Li; Xiaojuan Sun; Wenlong Jia; Jinnong Chen; Shangming Yang; Fangjian Zhou; Xiaokun Zhao; Shengqing Wan; Rui Ye; Chaozhao Liang; Zhisheng Liu; Peide Huang; Chunxiao Liu; Hui Jiang; Yong Wang; Hancheng Zheng; Liang Sun; Xingwang Liu; Zhimao Jiang

Transitional cell carcinoma (TCC) is the most common type of bladder cancer. Here we sequenced the exomes of nine individuals with TCC and screened all the somatically mutated genes in a prevalence set of 88 additional individuals with TCC with different tumor stages and grades. In our study, we discovered a variety of genes previously unknown to be mutated in TCC. Notably, we identified genetic aberrations of the chromatin remodeling genes (UTX, MLL-MLL3, CREBBP-EP300, NCOR1, ARID1A and CHD6) in 59% of our 97 subjects with TCC. Of these genes, we showed UTX to be altered substantially more frequently in tumors of low stages and grades, highlighting its potential role in the classification and diagnosis of bladder cancer. Our results provide an overview of the genetic basis of TCC and suggest that aberration of chromatin regulation might be a hallmark of bladder cancer.


Nature Genetics | 2013

Whole-genome and whole-exome sequencing of bladder cancer identifies frequent alterations in genes involved in sister chromatid cohesion and segregation

Guangwu Guo; Xiaojuan Sun; Chao Chen; Song Wu; Peide Huang; Zesong Li; Michael Dean; Yi Huang; Wenlong Jia; Quan Zhou; Aifa Tang; Zuoquan Yang; Xianxin Li; Pengfei Song; Xiaokun Zhao; Rui Ye; Shiqiang Zhang; Zhao Lin; Mingfu Qi; Shengqing Wan; Liangfu Xie; Fan Fan; Michael L. Nickerson; Xiangjun Zou; Xueda Hu; Li Xing; Zhaojie Lv; Hongbin Mei; Shengjie Gao; Chaozhao Liang

Bladder cancer is one of the most common cancers worldwide, with transitional cell carcinoma (TCC) being the predominant form. Here we report a genomic analysis of TCC by both whole-genome and whole-exome sequencing of 99 individuals with TCC. Beyond confirming recurrent mutations in genes previously identified as being mutated in TCC, we identified additional altered genes and pathways that were implicated in TCC. Notably, we discovered frequent alterations in STAG2 and ESPL1, two genes involved in the sister chromatid cohesion and segregation (SCCS) process. Furthermore, we also detected a recurrent fusion involving FGFR3 and TACC3, another component of SCCS, by transcriptome sequencing of 42 DNA-sequenced tumors. Overall, 32 of the 99 tumors (32%) harbored genetic alterations in the SCCS process. Our analysis provides evidence that genetic alterations affecting the SCCS process may be involved in bladder tumorigenesis and identifies a new therapeutic possibility for bladder cancer.


Nature Genetics | 2012

Frequent mutations of genes encoding ubiquitin-mediated proteolysis pathway components in clear cell renal cell carcinoma

Guangwu Guo; Yaoting Gui; Shengjie Gao; Aifa Tang; Xueda Hu; Yi Huang; Wenlong Jia; Zesong Li; Minghui He; Liang Sun; Pengfei Song; Xiaojuan Sun; Xiaokun Zhao; Sangming Yang; Chaozhao Liang; Shengqing Wan; Fangjian Zhou; Chao Chen; Jialou Zhu; Xianxin Li; Minghan Jian; Liang Zhou; Rui Ye; Peide Huang; Jing Chen; Tao Jiang; Xiao Liu; Yong Wang; Jing Zou; Zhimao Jiang

We sequenced whole exomes of ten clear cell renal cell carcinomas (ccRCCs) and performed a screen of ∼1,100 genes in 88 additional ccRCCs, from which we discovered 12 previously unidentified genes mutated at elevated frequencies in ccRCC. Notably, we detected frequent mutations in the ubiquitin-mediated proteolysis pathway (UMPP), and alterations in the UMPP were significantly associated with overexpression of HIF1α and HIF2α in the tumors (P = 0.01 and 0.04, respectively). Our findings highlight the potential contribution of UMPP to ccRCC tumorigenesis through the activation of the hypoxia regulatory network.


European Urology | 2014

Telomerase Reverse Transcriptase Gene Promoter Mutations Help Discern the Origin of Urogenital Tumors: A Genomic and Molecular Study

Song Wu; Peide Huang; Chong Li; Yi Huang; Xianxin Li; Yongqiang Wang; Chao Chen; Zhaojie Lv; Aifa Tang; Xiaojuan Sun; Jingxiao Lu; Weiping Li; Jie Zhou; Yaoting Gui; Fangjian Zhou; Daping Wang; Zhiming Cai

Activation of telomerase can be observed in almost all human tumor histotypes and detection of the urinary telomerase activities is useful for the diagnosis and surveillance of bladder cancer. In this study, we screened, by Sanger sequencing, 302 patients with various urogenital cancers for somatic mutations in the promoter of the telomerase reverse transcriptase (TERT) gene and determined the clinical relevance of TERT promoter mutations in urogenital cancer. In vitro assays were also performed to evaluate the functional influence of the discovered mutations. We found that the frequencies of somatic mutations in the TERT promoter varied substantially between different types of urogenital tumors (range: 0-63.7%), with urothelial carcinomas showing the highest mutation frequency and prostate cancer showing no mutation. The mutations upregulated the expression of TERT and enhanced the invasiveness of the tumor cells. The mutations were more prevalent in older patients with invasive diseases and advanced tumor stages, and were associated with significantly shorter survival time. Moreover, we also observed a significant co-occurrence of mutations between the TERT promoter and the tumor protein 51/retinoblastoma1 (TP53/RB1) signaling pathway. Hence, TERT promoter mutations may serve as important markers for the differential diagnosis and surveillance of urogenital tumors.


Cancer Epidemiology, Biomarkers & Prevention | 2009

Expression and Cytoplasmic Localization of SAM68 Is a Significant and Independent Prognostic Marker for Renal Cell Carcinoma

Zhiling Zhang; Jun Li; Haiqing Zheng; Chunping Yu; Jin Chen; Zhuowei Liu; Manzhi Li; Mu Sheng Zeng; Fangjian Zhou; Li Bing Song

Purpose: This retrospective study aimed to examine the expression and localization of SAM68 (Src-associated in mitosis, 68 kDa) in a larger cohort of surgical specimens of renal cell carcinoma and their correlation with the progression of human renal cell carcinoma. Experimental Design: The protein and mRNA expression levels of SAM68 in normal renal tubular epithelial cells, renal cell carcinoma cell lines, as well as nine pairs of renal cell carcinoma and matched tumor-adjacent renal tissues were examined using reverse transcription-PCR and Western blot. Moreover, SAM68 protein expression and localization in 241 clinicopathologically characterized renal cell carcinoma samples were examined by immunohistochemistry. Prognostic and diagnostic associations were examined by statistical analyses. Results: SAM68 was markedly overexpressed in renal cell carcinoma cell lines and renal cell carcinoma tissues at both the transcriptional and translational levels. Immunohistochemical analysis revealed high SAM68 protein expression in 129 of the 241 (53.5%) paraffin-embedded archival renal cell carcinoma specimens. Moreover, there was a significant correlation between SAM68 expression and pathologic stage (P < 0.001), T classification (P = 0.003), N classification (P = 0.001), M classification (P = 0.006), and Fuhrman grade (P < 0.001). Patients with higher SAM68 expression had shorter overall survival time than patients with lower SAM68 expression, and the cytoplasmic localization of SAM68 significantly correlated with clinicopathologic grade and outcome. Multivariate analysis indicated that SAM68 protein overexpression and cytoplasmic localization were independent predictors for poor survival of renal cell carcinoma patients. Conclusions: Our results suggest that SAM68 could represent a novel and useful prognostic marker for renal cell carcinoma. High SAM68 expression and cytoplasmic localization are associated with poor overall survival in renal cell carcinoma patients. (Cancer Epidemiol Biomarkers Prev 2009;18(10):2685–93)


BMC Cancer | 2011

Decreased expression of dual-specificity phosphatase 9 is associated with poor prognosis in clear cell renal cell carcinoma

Song Wu; Yong Wang; Liang Sun; Zhiling Zhang; Zhimao Jiang; Zike Qin; Hui Han; Zhuowei Liu; Xianxin Li; Aifa Tang; Yaoting Gui; Zhiming Cai; Fangjian Zhou

BackgroundThe molecular mechanisms involved in the development and progression of clear cell renal cell carcinomas (ccRCCs) are poorly understood. The objective of this study was to analyze the expression of dual-specificity phosphatase 9 (DUSP-9) and determine its clinical significance in human ccRCCs.MethodsThe expression of DUSP-9 mRNA was determined in 46 paired samples of ccRCCs and adjacent normal tissues by using real-time qPCR. The expression of the DUSP-9 was determined in 211 samples of ccRCCs and 107 paired samples of adjacent normal tissues by immunohistochemical analysis. Statistical analysis was performed to define the relationship between the expression of DUSP-9 and the clinical features of ccRCC.ResultsThe mRNA level of DUSP-9, which was determined by real-time RT-PCR, was found to be significantly lower in tumorous tissues than in the adjacent non-tumorous tissues (p < 0.001). An immunohistochemical analysis of 107 paired tissue specimens showed that the DUSP-9 expression was lower in tumorous tissues than in the adjacent non-tumorous tissues (p < 0.001). Moreover, there was a significant correlation between the DUSP-9 expression in ccRCCs and gender (p = 0.031), tumor size (p = 0.001), pathologic stage (p = 0.001), Fuhrman grade (p = 0.002), T stage (p = 0.001), N classification (p = 0.012), metastasis (p = 0.005), and recurrence (p < 0.001). Patients with lower DUSP-9 expression had shorter overall survival time than those with higher DUSP-9 expression (p < 0.001). Multivariate analysis indicated that low expression of the DUSP-9 was an independent predictor for poor survival of ccRCC patients.ConclusionTo our knowledge, this is the first study that determines the relationship between DUSP-9 expression and prognosis in ccRCC. We found that decreased expression of DUSP-9 is associated with poor prognosis in ccRCC. DUSP-9 may represent a novel and useful prognostic marker for ccRCC.


PLOS ONE | 2011

A systematic analysis on DNA methylation and the expression of both mRNA and microRNA in bladder cancer

Jialou Zhu; Zhimao Jiang; Fei Gao; Xueda Hu; Liang Zhou; Jiahao Chen; Huijuan Luo; Jihua Sun; Song Wu; Yonghua Han; Guangliang Yin; Maoshan Chen; Zujing Han; Xianxin Li; Yi Huang; Weixing Zhang; Fangjian Zhou; Tong Chen; Pingping Fa; Yong Wang; Liang Sun; Huimin Leng; Fenghao Sun; Yuchen Liu; Mingzhi Ye; Huanming Yang; Zhiming Cai; Yaoting Gui; Xiuqing Zhang

Background DNA methylation aberration and microRNA (miRNA) deregulation have been observed in many types of cancers. A systematic study of methylome and transcriptome in bladder urothelial carcinoma has never been reported. Methodology/Principal Findings The DNA methylation was profiled by modified methylation-specific digital karyotyping (MMSDK) and the expression of mRNAs and miRNAs was analyzed by digital gene expression (DGE) sequencing in tumors and matched normal adjacent tissues obtained from 9 bladder urothelial carcinoma patients. We found that a set of significantly enriched pathways disrupted in bladder urothelial carcinoma primarily related to “neurogenesis” and “cell differentiation” by integrated analysis of -omics data. Furthermore, we identified an intriguing collection of cancer-related genes that were deregulated at the levels of DNA methylation and mRNA expression, and we validated several of these genes (HIC1, SLIT2, RASAL1, and KRT17) by Bisulfite Sequencing PCR and Reverse Transcription qPCR in a panel of 33 bladder cancer samples. Conclusions/Significance We characterized the profiles between methylome and transcriptome in bladder urothelial carcinoma, identified a set of significantly enriched key pathways, and screened four aberrantly methylated and expressed genes. Conclusively, our findings shed light on a new avenue for basic bladder cancer research.


International Journal of Cancer | 2014

Multilayered molecular profiling supported the monoclonal origin of metastatic renal cell carcinoma

Yi Huang; Shengjie Gao; Song Wu; Pengfei Song; Xiaojuan Sun; Xueda Hu; Shiqiang Zhang; Yuan Yu; Jialou Zhu; Cailing Li; Zike Qin; Liangfu Xie; Qiong Yao; Aifa Tang; Zesong Li; Guangwu Guo; Shengqing Wan; Pei Dong; Liang Sun; Weiping Li; Daping Wang; Yaoting Gui; Huanming Yang; Fangjian Zhou; Xiuqing Zhang; Zhiming Cai

Primary renal cell carcinomas (pRCCs) have a high degree of intratumoral heterogeneity and are composed of multiple distinct subclones. However, it remains largely unknown that whether metastatic renal cell carcinomas (mRCCs) also have startling intratumoral heterogeneity or whether development of mRCCs is due to early dissemination or late diagnosis. To decipher the evolution of mRCC, we analyzed the multilayered molecular profiles of pRCC, local invasion of the vena cava (IVC), and distant metastasis to the brain (MB) from the same patient using whole‐genome sequencing, whole‐exome sequencing, DNA methylome profiling, and transcriptome sequencing. We found that mRCC had a lower degree of heterogeneity than pRCC and was likely to result from recent clonal expansion of a rare, advantageous subclone. Consequently, some key pathways that are targeted by clinically available drugs showed distinct expression patterns between pRCC and mRCC. From the genetic distances between different tumor subclones, we estimated that the progeny subclone giving rise to distant metastasis took over half a decade to acquire the full potential of metastasis since the birth of the subclone that evolved into IVC. Our evidence supported that mRCC was monoclonal and distant metastasis occurred late during renal cancer progression. Thus, there was a broad window for early detection of circulating tumor cells and future targeted treatments for patients with mRCCs should rely on the molecular profiles of metastases.


Carcinogenesis | 2012

The tumor-suppressor gene Nkx2.8 suppresses bladder cancer proliferation through upregulation of FOXO3a and inhibition of the MEK/ERK signaling pathway.

Chunping Yu; Zhiling Zhang; Wenting Liao; Xiaohui Zhao; Liping Liu; Yanheng Wu; Zhuowei Liu; Yonghong Li; Yi Zhong; Kun Chen; Jun Li; Fangjian Zhou; Libing Song

Invasive bladder cancer is a lethal disease for which effective prognostic markers as well as potential therapy targets are still lacking. Nkx2.8 (Nk2 homeobox 8), a novel member of the NK-2 gene family, was reported to play an important role in the development and progression of human cancer. Herein, we reported that Nkx2.8 was markedly reduced in bladder cancer tissues compared with matched adjacent normal urothelial tissues. Nkx2.8 levels were inversely correlated with advanced T classification, N classification, tumor multiplicity, high proliferation index (Ki-67) and poor survival of patients. Furthermore, we found that overexpression of Nkx2.8 in bladder cancer cells significantly inhibited cell proliferation in vitro and in vivo, whereas silencing Nkx2.8 dramatically enhanced cell proliferation. Moreover, we demonstrated that overexpression of Nkx2.8 resulted in G(1)/S phase arrest, accompanied by upregulation of p27(Kip1), downregulation of cyclin D1 and p-FOXO3a and inhibition of MEK/ERK pathway activity. Meanwhile, silencing Nkx2.8 led to acceleration of G(1)/S transition, downregulation of p27(Kip1), upregulation of cyclin D1 and p-FOXO3a and increase of MEK/ERK pathway activity. These findings suggest that Nkx2.8 plays a potential tumor suppressor role in bladder cancer progression and represents a valuable clinical prognostic marker of this disease.


Cell Death and Disease | 2015

Akt phosphorylates Prohibitin 1 to mediate its mitochondrial localization and promote proliferation of bladder cancer cells

Lijuan Jiang; Pei Dong; Ziji Zhang; Cuixian Li; Yun-Sheng Li; Yuehua Liao; Xiangdong Li; Zhiming Wu; Songhe Guo; S Mai; Dan Xie; Zhuowei Liu; Fangjian Zhou

Bladder cancer (BC) is very common and associated with significant morbidity and mortality, though the molecular underpinnings of its origination and progression remain poorly understood. In this study, we demonstrate that Prohibitin 1 (PHB) was overexpressed in human BC tissues and that PHB upregulation was associated with poor prognosis. We also found that PHB was necessary and sufficient for BC cell proliferation. Interestingly, the overexpressed PHB was primarily found within mitochondria, and we provide the first direct evidence that phosphorylation by Akt at Thr258 of PHB induces this mitochondrial localization. Inhibiton of Akt reverses these effects and inhibited the proliferation of BC cells. Finally, the phosphorylation of PHB was required for BC cell proliferation, further implicating the importance of the Akt in BC. Taken together, these findings identify the Akt/PHB signaling cascade as a novel mechanism of cancer cell proliferation and provide the scientific basis for the establishment of PHB as a new prognostic marker and treatment target for BC.

Collaboration


Dive into the Fangjian Zhou's collaboration.

Top Co-Authors

Avatar

Zhuowei Liu

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Hui Han

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Kai Yao

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Zike Qin

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Yonghong Li

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pei Dong

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge