Fangping Cai
Duke University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fangping Cai.
Nature | 2013
Hua-Xin Liao; Rebecca M. Lynch; Tongqing Zhou; Feng Gao; S. Munir Alam; Scott D. Boyd; Andrew Fire; Krishna M. Roskin; Chaim A. Schramm; Z. F. Zhang; Jiang Zhu; Lawrence Shapiro; Nisc Comparative Sequencing Program; James C. Mullikin; S. Gnanakaran; Peter Hraber; Kevin Wiehe; Garnett Kelsoe; Guang Yang; Shi-Mao Xia; David C. Montefiori; Robert Parks; Krissey E. Lloyd; Richard M. Scearce; Kelly A. Soderberg; Myron S. Cohen; Gift Kamanga; Mark K. Louder; Lillian Tran; Yue Chen
Current human immunodeficiency virus-1 (HIV-1) vaccines elicit strain-specific neutralizing antibodies. However, cross-reactive neutralizing antibodies arise in approximately 20% of HIV-1-infected individuals, and details of their generation could provide a blueprint for effective vaccination. Here we report the isolation, evolution and structure of a broadly neutralizing antibody from an African donor followed from the time of infection. The mature antibody, CH103, neutralized approximately 55% of HIV-1 isolates, and its co-crystal structure with the HIV-1 envelope protein gp120 revealed a new loop-based mechanism of CD4-binding-site recognition. Virus and antibody gene sequencing revealed concomitant virus evolution and antibody maturation. Notably, the unmutated common ancestor of the CH103 lineage avidly bound the transmitted/founder HIV-1 envelope glycoprotein, and evolution of antibody neutralization breadth was preceded by extensive viral diversification in and near the CH103 epitope. These data determine the viral and antibody evolution leading to induction of a lineage of HIV-1 broadly neutralizing antibodies, and provide insights into strategies to elicit similar antibodies by vaccination.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Nicholas F. Parrish; Feng Gao; Hui Li; Elena E. Giorgi; Hannah J. Barbian; Erica H. Parrish; Lara Zajic; Shilpa S. Iyer; Julie M. Decker; Amit Kumar; Bhavna Hora; Anna Berg; Fangping Cai; Jennifer Hopper; Thomas N. Denny; Hairao Ding; Christina Ochsenbauer; John C. Kappes; Rachel P. Galimidi; Anthony P. West; Pamela J. Bjorkman; Craig B. Wilen; Robert W. Doms; Meagan O'Brien; Nina Bhardwaj; Persephone Borrow; Barton F. Haynes; Mark Muldoon; James Theiler; Bette T. Korber
Defining the virus–host interactions responsible for HIV-1 transmission, including the phenotypic requirements of viruses capable of establishing de novo infections, could be important for AIDS vaccine development. Previous analyses have failed to identify phenotypic properties other than chemokine receptor 5 (CCR5) and CD4+ T-cell tropism that are preferentially associated with viral transmission. However, most of these studies were limited to examining envelope (Env) function in the context of pseudoviruses. Here, we generated infectious molecular clones of transmitted founder (TF; n = 27) and chronic control (CC; n = 14) viruses of subtypes B (n = 18) and C (n = 23) and compared their phenotypic properties in assays specifically designed to probe the earliest stages of HIV-1 infection. We found that TF virions were 1.7-fold more infectious (P = 0.049) and contained 1.9-fold more Env per particle (P = 0.048) compared with CC viruses. TF viruses were also captured by monocyte-derived dendritic cells 1.7-fold more efficiently (P = 0.035) and more readily transferred to CD4+ T cells (P = 0.025). In primary CD4+ T cells, TF and CC viruses replicated with comparable kinetics; however, when propagated in the presence of IFN-α, TF viruses replicated to higher titers than CC viruses. This difference was significant for subtype B (P = 0.000013) but not subtype C (P = 0.53) viruses, possibly reflecting demographic differences of the respective patient cohorts. Together, these data indicate that TF viruses are enriched for higher Env content, enhanced cell-free infectivity, improved dendritic cell interaction, and relative IFN-α resistance. These viral properties, which likely act in concert, should be considered in the development and testing of AIDS vaccines.
Cell | 2014
Feng Gao; Mattia Bonsignori; Hua-Xin Liao; Amit Kumar; Shi Mao Xia; Xiaozhi Lu; Fangping Cai; Kwan Ki Hwang; Hongshuo Song; Tongqing Zhou; Rebecca M. Lynch; S. Munir Alam; M. Anthony Moody; Guido Ferrari; Mark Berrong; Garnett Kelsoe; George M. Shaw; Beatrice H. Hahn; David C. Montefiori; Gift Kamanga; Myron S. Cohen; Peter Hraber; Peter D. Kwong; Bette T. Korber; John R. Mascola; Thomas B. Kepler; Barton F. Haynes
Development of strategies for induction of HIV-1 broadly neutralizing antibodies (bnAbs) by vaccines is a priority. Determining the steps of bnAb induction in HIV-1-infected individuals who make bnAbs is a key strategy for immunogen design. Here, we study the B cell response in a bnAb-producing individual and report cooperation between two B cell lineages to drive bnAb development. We isolated a virus-neutralizing antibody lineage that targeted an envelope region (loop D) and selected virus escape mutants that resulted in both enhanced bnAb lineage envelope binding and escape mutant neutralization-traits associated with increased B cell antigen drive. Thus, in this individual, two B cell lineages cooperated to induce the development of bnAbs. Design of vaccine immunogens that simultaneously drive both helper and broadly neutralizing B cell lineages may be important for vaccine-induced recapitulation of events that transpire during the maturation of neutralizing antibodies in HIV-1-infected individuals.
Nature Methods | 2007
Fangping Cai; Haifeng Chen; Charles B. Hicks; John A. Bartlett; Jun Zhu; Feng Gao
We developed a highly sensitive parallel allele-specific sequencing (PASS) assay to simultaneously analyze a large number of viral genomes and detect minor drug-resistant populations at ∼0.1–0.01% levels. Using this assay on samples from individuals infected with human immunodeficiency viruses (HIV), we successfully detected and quantified minor populations of drug-resistant viruses and performed linkage analysis of multiple-drug resistance mutations. This assay may serve as a useful tool to study drug resistance in HIV and other infectious agents.NOTE: In the supplementary information initially published online to accompany this article, the image for patient 200371 in Supplementary Figure 6 was incorrect. This panel was replaced. The error has been corrected online.
Antimicrobial Agents and Chemotherapy | 2011
Jia Liu; Michael D. Miller; Robert M. Danovich; Nathan Vandergrift; Fangping Cai; Charles B. Hicks; Daria J. Hazuda; Feng Gao
ABSTRACT Raltegravir is highly efficacious in the treatment of HIV-1 infection. The prevalence and impact on virologic outcome of low-frequency resistant mutations among HIV-1-infected patients not previously treated with raltegravir have not been fully established. Samples from HIV treatment-experienced patients entering a clinical trial of raltegravir treatment were analyzed using a parallel allele-specific sequencing (PASS) assay that assessed six primary and six secondary integrase mutations. Patients who achieved and sustained virologic suppression (success patients, n = 36) and those who experienced virologic rebound (failure patients, n = 35) were compared. Patients who experienced treatment failure had twice as many raltegravir-associated resistance mutations prior to initiating treatment as those who achieved sustained virologic success, but the difference was not statistically significant. The frequency of nearly all detected resistance mutations was less than 1% of viral population, and the frequencies of mutations between the success and failure groups were similar. Expansion of pre-existing mutations (one primary and five secondary) was observed in 16 treatment failure patients in whom minority resistant mutations were detected at baseline, suggesting that they might play a role in the development of drug resistance. Two or more mutations were found in 13 patients (18.3%), but multiple mutations were not present in any single viral genome by linkage analysis. Our study demonstrates that low-frequency primary RAL-resistant mutations were uncommon, while minority secondary RAL-resistant mutations were more frequently detected in patients naïve to raltegravir. Additional studies in larger populations are warranted to fully understand the clinical implications of these mutations.
Retrovirology | 2012
Hongshuo Song; Jeffrey W. Pavlicek; Fangping Cai; Tanmoy Bhattacharya; Hui Li; Shilpa S. Iyer; Katharine J. Bar; Julie M. Decker; Nilu Goonetilleke; Michael K. P. Liu; Anna Berg; Bhavna Hora; Mark Drinker; Josh Eudailey; Joy Pickeral; Ma Moody; Guido Ferrari; Andrew J. McMichael; Alan S. Perelson; George M. Shaw; Beatrice H. Hahn; Barton F. Haynes; Feng Gao
BackgroundA modest change in HIV-1 fitness can have a significant impact on viral quasispecies evolution and viral pathogenesis, transmission and disease progression. To determine the impact of immune escape mutations selected by cytotoxic T lymphocytes (CTL) on viral fitness in the context of the cognate transmitted/founder (T/F) genome, we developed a new competitive fitness assay using molecular clones of T/F genomes lacking exogenous genetic markers and a highly sensitive and precise parallel allele-specific sequencing (PASS) method.ResultsThe T/F and mutant viruses were competed in CD4+ T-cell enriched cultures, relative proportions of viruses were assayed after repeated cell-free passage, and fitness costs were estimated by mathematical modeling. Naturally occurring HLA B57-restricted mutations involving the TW10 epitope in Gag and two epitopes in Tat/Rev and Env were assessed independently and together. Compensatory mutations which restored viral replication fitness were also assessed. A principal TW10 escape mutation, T242N, led to a 42% reduction in replication fitness but V247I and G248A mutations in the same epitope restored fitness to wild-type levels. No fitness difference was observed between the T/F and a naturally selected variant carrying the early CTL escape mutation (R355K) in Env and a reversion mutation in the Tat/Rev overlapping region.ConclusionsThese findings reveal a broad spectrum of fitness costs to CTL escape mutations in T/F viral genomes, similar to recent findings reported for neutralizing antibody escape mutations, and highlight the extraordinary plasticity and adaptive potential of the HIV-1 genome. Analysis of T/F genomes and their evolved progeny is a powerful approach for assessing the impact of composite mutational events on viral fitness.
Journal of Clinical Investigation | 2015
Sallie R. Permar; Youyi Fong; Nathan Vandergrift; Genevieve G. Fouda; Peter B. Gilbert; Robert Parks; Frederick H. Jaeger; Justin Pollara; Amanda Martelli; Brooke E. Liebl; Krissey E. Lloyd; Nicole L. Yates; R. Glenn Overman; Xiaoying Shen; Kaylan Whitaker; Haiyan Chen; Jamie Pritchett; Erika Solomon; Emma Friberg; Dawn J. Marshall; John F. Whitesides; Thaddeus C. Gurley; Tarra Von Holle; David Martinez; Fangping Cai; Amit Kumar; Shi Mao Xia; Xiaozhi Lu; Raul Louzao; Samantha Wilkes
Despite the wide availability of antiretroviral drugs, more than 250,000 infants are vertically infected with HIV-1 annually, emphasizing the need for additional interventions to eliminate pediatric HIV-1 infections. Here, we aimed to define humoral immune correlates of risk of mother-to-child transmission (MTCT) of HIV-1, including responses associated with protection in the RV144 vaccine trial. Eighty-three untreated, HIV-1-transmitting mothers and 165 propensity score-matched nontransmitting mothers were selected from the Women and Infants Transmission Study (WITS) of US nonbreastfeeding, HIV-1-infected mothers. In a multivariable logistic regression model, the magnitude of the maternal IgG responses specific for the third variable loop (V3) of the HIV-1 envelope was predictive of a reduced risk of MTCT. Neutralizing Ab responses against easy-to-neutralize (tier 1) HIV-1 strains also predicted a reduced risk of peripartum transmission in secondary analyses. Moreover, recombinant maternal V3-specific IgG mAbs mediated neutralization of autologous HIV-1 isolates. Thus, common V3-specific Ab responses in maternal plasma predicted a reduced risk of MTCT and mediated autologous virus neutralization, suggesting that boosting these maternal Ab responses may further reduce HIV-1 MTCT.
Retrovirology | 2013
Genevieve G. Fouda; Tatenda Mahlokozera; Jesus F. Salazar-Gonzalez; Maria G. Salazar; Gerald H. Learn; Surender B. Kumar; S. Moses Dennison; Elizabeth S. Russell; Katherine Rizzolo; Frederick H. Jaeger; Fangping Cai; Nathan Vandergrift; Feng Gao; Beatrice H. Hahn; George M. Shaw; Christina Ochsenbauer; Ronald Swanstrom; Steve Meshnick; Victor Mwapasa; Linda Kalilani; Susan A. Fiscus; David C. Montefiori; Barton F. Haynes; Jesse J. Kwiek; S. Munir Alam; Sallie R. Permar
BackgroundBreastfeeding is a leading cause of infant HIV-1 infection in the developing world, yet only a minority of infants exposed to HIV-1 via breastfeeding become infected. As a genetic bottleneck severely restricts the number of postnatally-transmitted variants, genetic or phenotypic properties of the virus Envelope (Env) could be important for the establishment of infant infection. We examined the efficiency of virologic functions required for initiation of infection in the gastrointestinal tract and the neutralization sensitivity of HIV-1 Env variants isolated from milk of three postnatally-transmitting mothers (n=13 viruses), five clinically-matched nontransmitting mothers (n=16 viruses), and seven postnatally-infected infants (n = 7 postnatally-transmitted/founder (T/F) viruses).ResultsThere was no difference in the efficiency of epithelial cell interactions between Env virus variants from the breast milk of transmitting and nontransmitting mothers. Moreover, there was similar efficiency of DC-mediated trans-infection, CCR5-usage, target cell fusion, and infectivity between HIV-1 Env-pseudoviruses from nontransmitting mothers and postnatal T/F viruses. Milk Env-pseudoviruses were generally sensitive to neutralization by autologous maternal plasma and resistant to breast milk neutralization. Infant T/F Env-pseudoviruses were equally sensitive to neutralization by broadly-neutralizing monoclonal and polyclonal antibodies as compared to nontransmitted breast milk Env variants.ConclusionPostnatally-T/F Env variants do not appear to possess a superior ability to interact with and cross a mucosal barrier or an exceptional resistance to neutralization that define their capability to initiate infection across the infant gastrointestinal tract in the setting of preexisting maternal antibodies.
Journal of Virology | 2011
Dongning Wang; Charles B. Hicks; Neela D. Goswami; Emi Tafoya; Ruy M. Ribeiro; Fangping Cai; Alan S. Perelson; Feng Gao
ABSTRACT Analysis of a large number of HIV-1 genomes at multiple time points after antiretroviral treatment (ART) interruption allows determination of the evolution of drug-resistant viruses and viral fitness in vivo in the absence of drug selection pressure. Using a parallel allele-specific sequencing (PASS) assay, potential primary drug-resistant mutations in five individual patients were studied by analyzing over 18,000 viral genomes. A three-phase evolution of drug-resistant viruses was observed after termination of ART. In the first phase, viruses carrying various combinations of multiple-drug-resistant (MDR) mutations predominated with each mutation persisting in relatively stable proportions while the overall number of resistant viruses gradually increased. In the second phase, viruses with linked MDR mutations rapidly became undetectable and single-drug-resistant (SDR) viruses emerged as minority populations while wild-type viruses quickly predominated. In the third phase, low-frequency SDR viruses remained detectable as long as 59 weeks after treatment interruption. Mathematical modeling showed that the loss in relative fitness increased with the number of mutations in each viral genome and that viruses with MDR mutations had lower fitness than viruses with SDR mutations. No single viral genome had seven or more drug resistance mutations, suggesting that such severely mutated viruses were too unfit to be detected or that the resistance gain offered by the seventh mutation did not outweigh its contribution to the overall fitness loss of the virus. These data provide a more comprehensive understanding of evolution and fitness of drug-resistant viruses in vivo and may lead to improved treatment strategies for ART-experienced patients.
Journal of Clinical Microbiology | 2013
Guoqing Zhang; Fangping Cai; Zhiyong Zhou; Joshua DeVos; Nick Wagar; Karidia Diallo; Isaac Zulu; Nellie Wadonda-Kabondo; Jeffrey S.A. Stringer; Paul J. Weidle; Clement B. Ndongmo; Izukanji Sikazwe; Abdoulaye Sarr; Matthews Kagoli; John N. Nkengasong; Feng Gao; Chunfu Yang
ABSTRACT High-throughput, sensitive, and cost-effective HIV drug resistance (HIVDR) detection assays are needed for large-scale monitoring of the emergence and transmission of HIVDR in resource-limited settings. Using suspension array technology, we have developed a multiplex allele-specific (MAS) assay that can simultaneously detect major HIVDR mutations at 20 loci. Forty-five allele-specific primers tagged with unique 24-base oligonucleotides at the 5′ end were designed to detect wild-type and mutant alleles at the 20 loci of HIV-1 subtype C. The MAS assay was first established and optimized with three plasmid templates (C-wt, C-mut1, and C-mut2) and then evaluated using 148 plasma specimens from HIV-1 subtype C-infected individuals. All the wild-type and mutant alleles were unequivocally distinguished with plasmid templates, and the limits of detection were 1.56% for K219Q and K219E, 3.13% for L76V, 6.25% for K65R, K70R, L74V, L100I, K103N, K103R, Q151M, Y181C, and I47V, and 12.5% for M41L, K101P, K101E, V106A, V106M, Y115F, M184V, Y188L, G190A, V32I, I47A, I84V, and L90M. Analyses of 148 plasma specimens revealed that the MAS assay gave 100% concordance with conventional sequencing at eight loci and >95% (range, 95.21% to 99.32%) concordance at the remaining 12 loci. The differences observed were caused mainly by 24 additional low-abundance alleles detected by the MAS assay. Ultradeep sequencing analysis confirmed 15 of the 16 low-abundance alleles. This multiplex, sensitive, and straightforward result-reporting assay represents a new efficient genotyping tool for HIVDR surveillance and monitoring.