Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fangyi Cheng is active.

Publication


Featured researches published by Fangyi Cheng.


Advanced Materials | 2011

Functional Materials for Rechargeable Batteries

Fangyi Cheng; Jing Liang; Zhanliang Tao; Jun Chen

There is an ever-growing demand for rechargeable batteries with reversible and efficient electrochemical energy storage and conversion. Rechargeable batteries cover applications in many fields, which include portable electronic consumer devices, electric vehicles, and large-scale electricity storage in smart or intelligent grids. The performance of rechargeable batteries depends essentially on the thermodynamics and kinetics of the electrochemical reactions involved in the components (i.e., the anode, cathode, electrolyte, and separator) of the cells. During the past decade, extensive efforts have been dedicated to developing advanced batteries with large capacity, high energy and power density, high safety, long cycle life, fast response, and low cost. Here, recent progress in functional materials applied in the currently prevailing rechargeable lithium-ion, nickel-metal hydride, lead acid, vanadium redox flow, and sodium-sulfur batteries is reviewed. The focus is on research activities toward the ionic, atomic, or molecular diffusion and transport; electron transfer; surface/interface structure optimization; the regulation of the electrochemical reactions; and the key materials and devices for rechargeable batteries.


Nature Chemistry | 2011

Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts

Fangyi Cheng; Jian Shen; Bo Peng; Yuede Pan; Zhanliang Tao; Jun Chen

Spinels can serve as alternative low-cost bifunctional electrocatalysts for oxygen reduction/evolution reactions (ORR/OER), which are the key barriers in various electrochemical devices such as metal-air batteries, fuel cells and electrolysers. However, conventional ceramic synthesis of crystalline spinels requires an elevated temperature, complicated procedures and prolonged heating time, and the resulting product exhibits limited electrocatalytic performance. It has been challenging to develop energy-saving, facile and rapid synthetic methodologies for highly active spinels. In this Article, we report the synthesis of nanocrystalline M(x)Mn(3-x)O(4) (M = divalent metals) spinels under ambient conditions and their electrocatalytic application. We show rapid and selective formation of tetragonal or cubic M(x)Mn(3-x)O(4) from the reduction of amorphous MnO(2) in aqueous M(2+) solution. The prepared Co(x)Mn(3-x)O(4) nanoparticles manifest considerable catalytic activity towards the ORR/OER as a result of their high surface areas and abundant defects. The newly discovered phase-dependent electrocatalytic ORR/OER characteristics of Co-Mn-O spinels are also interpreted by experiment and first-principle theoretical studies.


Accounts of Chemical Research | 2009

Combination of Lightweight Elements and Nanostructured Materials for Batteries

Jun Chen; Fangyi Cheng

In a society that increasingly relies on mobile electronics, demand is rapidly growing for both primary and rechargeable batteries that power devices from cell phones to vehicles. Existing batteries utilize lightweight active materials that use electrochemical reactions of ions such as H(+), OH(-) and Li(+)/Mg(2+) to facilitate energy storage and conversion. Ideal batteries should be inexpensive, have high energy density, and be made from environmentally friendly materials; batteries based on bulk active materials do not meet these requirements. Because of slow electrode process kinetics and low-rate ionic diffusion/migration, most conventional batteries demonstrate huge gaps between their theoretical and practical performance. Therefore, efforts are underway to improve existing battery technologies and develop new electrode reactions for the next generation of electrochemical devices. Advances in electrochemistry, surface science, and materials chemistry are leading to the use of nanomaterials for efficient energy storage and conversion. Nanostructures offer advantages over comparable bulk materials in improving battery performance. This Account summarizes our progress in battery development using a combination of lightweight elements and nanostructured materials. We highlight the benefits of nanostructured active materials for primary zinc-manganese dioxide (Zn-Mn), lithium-manganese dioxide (Li-Mn), and metal (Mg, Al, Zn)-air batteries, as well as rechargeable lithium ion (Li-ion) and nickel-metal hydride (Ni-MH) batteries. Through selected examples, we illustrate the effect of structure, shape, and size on the electrochemical properties of electrode materials. Because of their numerous active sites and facile electronic/ionic transfer and diffusion, nanostructures can improve battery efficiency. In particular, we demonstrate the properties of nanostructured active materials including Mg, Al, Si, Zn, MnO(2), CuV(2)O(6), LiNi(0.8)Co(0.2)O(2), LiFePO(4), Fe(2)O(3), Co(3)O(4), TiS(2), and Ni(OH)(2) in battery applications. Electrochemical investigations reveal that we generally attain larger capacities and improved kinetics for electrode materials as their average particle size decreases. Novel nanostructures such as nanowires, nanotubes, nanourchins, and porous nanospheres show lower activation energy, enhanced reactivity, improved high-rate charge/discharge capability, and more controlled structural flexibility than their bulk counterparts. In particular, anode materials such as Si nanospheres and Fe(2)O(3) nanotubes can deliver reversible capacity exceeding 500 mA.h/g. (Graphite used commercially has a theoretical capacity of 372 mA x h/g.) Nanocomposite cathode materials such as NiP-doped LiFePO(4) and metal hydroxide-coated Ni(OH)(2) nanotubes allow us to integrate functional components, which enhance electrical conductivity and suppress volume expansion. Therefore, shifting from bulk to nanostructured electrode materials could offer a revolutionary opportunity to develop advanced green batteries with large capacity, high energy and power density, and long cycle life.


Nano Letters | 2014

Ultrasmall Sn Nanoparticles Embedded in Nitrogen-Doped Porous Carbon As High-Performance Anode for Lithium-Ion Batteries

Zhiqiang Zhu; Shiwen Wang; Jing Du; Qi Jin; Tianran Zhang; Fangyi Cheng; Jun Chen

In this Letter, we reported on the preparation and Li-ion battery anode application of ultrasmall Sn nanoparticles (∼5 nm) embedded in nitrogen-doped porous carbon network (denoted as 5-Sn/C). Pyrolysis of Sn(Salen) at 650 °C under Ar atmosphere was carried out to prepare N-doped porous 5-Sn/C with the BET specific surface area of 286.3 m(2) g(-1). The 5-Sn/C showed an initial discharge capacity of 1014 mAh g(-1) and a capacity retention of 722 mAh g(-1) after 200 cycles at the current density of 0.2 A g(-1). Furthermore, a reversible capacity of ∼480 mAh g(-1) was obtained at much higher current density of 5 A g(-1). The remarkable electrochemical performance of 5-Sn/C was attributed to the effective combination of ultrasmall Sn nanoparticles, uniform distribution, and porous carbon network structure, which simultaneously solved the major problems of pulverization, loss of electrical contact, and particle aggregation facing Sn anode.


Angewandte Chemie | 2014

MoS2 Nanoflowers with Expanded Interlayers as High-Performance Anodes for Sodium-Ion Batteries†

Zhe Hu; Lixiu Wang; Kai Zhang; Jianbin Wang; Fangyi Cheng; Zhanliang Tao; Jun Chen

MoS2 nanoflowers with expanded interlayer spacing of the (002) plane were synthesized and used as high-performance anode in Na-ion batteries. By controlling the cut-off voltage to the range of 0.4-3 V, an intercalation mechanism rather than a conversion reaction is taking place. The MoS2 nanoflower electrode shows high discharge capacities of 350 mAh g(-1) at 0.05 A g(-1) , 300 mAh g(-1) at 1 A g(-1) , and 195 mAh g(-1) at 10 A g(-1) . An initial capacity increase with cycling is caused by peeling off MoS2 layers, which produces more active sites for Na(+) storage. The stripping of MoS2 layers occurring in charge/discharge cycling contributes to the enhanced kinetics and low energy barrier for the intercalation of Na(+) ions. The electrochemical reaction is mainly controlled by the capacitive process, which facilitates the high-rate capability. Therefore, MoS2 nanoflowers with expanded interlayers hold promise for rechargeable Na-ion batteries.


Angewandte Chemie | 2013

Enhancing Electrocatalytic Oxygen Reduction on MnO2 with Vacancies

Fangyi Cheng; Tianran Zhang; Yi Zhang; Jing Du; Xiaopeng Han; Jun Chen

Oxygen-vacant nanocrystalline MnO(2) has been prepared by the simple process of annealing pristine oxide in Ar or O(2) . Both experimental and computational studies indicate that the catalytic activity of MnO(2) towards oxygen reduction is enhanced by introducing a modest concentration of oxygen vacancies.


Energy and Environmental Science | 2015

Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries

Zhe Hu; Zhiqiang Zhu; Fangyi Cheng; Kai Zhang; Jianbin Wang; Chengcheng Chen; Jun Chen

It is desirable to develop electrode materials for advanced rechargeable batteries with low cost, long life, and high-rate capability. Pyrite FeS2, as an easily obtained natural mineral, has been already commercialized in primary lithium batteries, but encountered problems in rechargeable batteries with carbonate-based electrolytes due to the limited cycle life caused by the conversion-type reaction (FeS2 + 4M → Fe + 2M2S (M = Li or Na)). Herein, we demonstrate that FeS2 microspheres can be applied in room-temperature rechargeable sodium batteries with only the intercalation reaction by simultaneously selecting a compatible NaSO3CF3/diglyme electrolyte and tuning the cut-off voltage to 0.8 V. A surprisingly high-rate capability (170 mA h g−1 at 20 A g−1) and unprecedented long-term cyclability (∼90% capacity retention for 20 000 cycles) has been obtained. We suggest that a stable electrically conductive layer-structured NaxFeS2 was formed during cycling, which enables the highly reversible sodium intercalation and deintercalation. Moreover, 18650-type sodium batteries were constructed exhibiting a high capacity of ∼4200 mA h (corresponding to 126 W h kg−1 and 382 W h L−1) and a capacity retention of 97% after an initial 200 cycles at 4 A during charge–discharge. This shows that the production of rechargeable sodium batteries with FeS2 microspheres is viable for commercial utilization.


Angewandte Chemie | 2014

Cobalt Sulfide Nanosheet/Graphene/Carbon Nanotube Nanocomposites as Flexible Electrodes for Hydrogen Evolution

Shengjie Peng; Linlin Li; Xiaopeng Han; Wenping Sun; Madhavi Srinivasan; Subodh G. Mhaisalkar; Fangyi Cheng; Qingyu Yan; Jun Chen; Seeram Ramakrishna

Flexible three-dimensional (3D) nanoarchitectures have received tremendous interest recently because of their potential applications in wearable electronics, roll-up displays, and other devices. The design and fabrication of a flexible and robust electrode based on cobalt sulfide/reduced graphene oxide/carbon nanotube (CoS2 /RGO-CNT) nanocomposites are reported. An efficient hydrothermal process combined with vacuum filtration was used to synthesize such composite architecture, which was then embedded in a porous CNT network. This conductive and robust film is evaluated as electrocatalyst for the hydrogen evolution reaction. The synergistic effect of CoS2 , graphene, and CNTs leads to unique CoS2 /RGO-CNT nanoarchitectures, the HER activity of which is among the highest for non-noble metal electrocatalysts, showing 10 mA cm(-2) current density at about 142 mV overpotentials and a high electrochemical stability.


Nature Communications | 2015

Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis

Chun Li; Xiaopeng Han; Fangyi Cheng; Yuxiang Hu; Chengcheng Chen; Jun Chen

Spinel-type oxides are technologically important in many fields, including electronics, magnetism, catalysis and electrochemical energy storage and conversion. Typically, these materials are prepared by conventional ceramic routes that are energy consuming and offer limited control over shape and size. Moreover, for mixed-metal oxide spinels (for example, CoxMn3−xO4), the crystallographic phase sensitively correlates with the metal ratio, posing great challenges to synthesize active product with simultaneously tuned phase and composition. Here we report a general synthesis of ultrasmall cobalt manganese spinels with tailored structural symmetry and composition through facile solution-based oxidation–precipitation and insertion–crystallization process at modest condition. As an example application, the nanocrystalline spinels catalyse the oxygen reduction/evolution reactions, showing phase and composition co-dependent performance. Furthermore, the mild synthetic strategy allows the formation of homogeneous and strongly coupled spinel/carbon nanocomposites, which exhibit comparable activity but superior durability to Pt/C and serve as efficient catalysts to build rechargeable Zn–air and Li–air batteries.


Nano Letters | 2013

LiNi0.5Mn1.5O4 Porous Nanorods as High-Rate and Long-Life Cathodes for Li-Ion Batteries

Xiaolong Zhang; Fangyi Cheng; Jingang Yang; Jun Chen

Spinel-type LiNi0.5Mn1.5O4 porous nanorods assembled with nanoparticles have been prepared and investigated as high-rate and long-life cathode materials for rechargeable lithium-ion batteries. One-dimensional porous nanostructures of LiNi0.5Mn1.5O4 with ordered P4332 phase were obtained through solid-state Li and Ni implantation of porous Mn2O3 nanorods that resulted from thermal decomposition of the chain-like MnC2O4 precursor. The fabricated LiNi0.5Mn1.5O4 delivered specific capacities of 140 and 109 mAh g(-1) at 1 and 20 C rates, respectively. At a 5 C cycling rate, a capacity retention of 91% was sustained after 500 cycles, with extremely low capacity fade (<1%) during the initial 300 cycles. The remarkable performance was attributed to the porous 1D nanostructures that can accommodate strain relaxation by slippage at the subunits wall boundaries and provide short Li-ion diffusion distance along the confined dimension.

Collaboration


Dive into the Fangyi Cheng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shengjie Peng

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge