Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fanica Cimpoesu is active.

Publication


Featured researches published by Fanica Cimpoesu.


Inorganic Chemistry | 2012

Chiral crystallization of a heterodinuclear Ni-Ln series: comprehensive analysis of the magnetic properties.

Fanica Cimpoesu; Françoise Dahan; Sonia Ladeira; Marilena Ferbinteanu; Jean-Pierre Costes

Four heterodinuclear (H(2)O)(2)NiL-Ln(NO(3))(3) complexes (Ln = Tb, Dy, Er, Yb) with a double phenoxo bridge coming from the dideprotonated Schiff-base ligand are synthesized and characterized by crystal and powder X-ray diffraction studies. This series of compounds devoid of any chiral center, crystallizes in a noncentrosymmetric space group P2(1), as the previously described (H(2)O)(2)NiL-Gd(NO(3))(3) equivalent. All four complexes are ferromagnetically coupled. If this behavior is clearly shown by the χ(M)T increase at low temperature in the case of the Ni-Tb and Ni-Dy complexes, it necessitates the preparation of the Zn-Er and Zn-Yb equivalent entities to be evidenced in the case of the Ni-Er and Ni-Yb complexes. Out-of-phase susceptibility signals are found in the four cases, but the SMM behavior is neither confirmed, nor completely studied because of the presence of fast quantum tunnelling at zero field. Thorough ab initio multiconfiguration calculations are carried out, achieving a realistic account of ligand field effects, exchange coupling and magnetic anisotropy in the discussed systems. The calculations reveal the ferromagnetic intercenter exchange coupling, the interplay with spin-orbit effects leading to a Ising-like scheme of the lowest levels. The ab initio simulation of the magnetic susceptibility is in semiquantitative agreement with experimental data, certifying the reasonableness of the theoretical treatments in obtaining valuable information for the interacting mechanisms. The anisotropy is accounted for by drawing polar diagrams of state-specific magnetization functions, obtained by handling of the data resulting from ab initio calculations including the spin-orbit effects. Supplementary, Density Functional Theory (DFT) calculations are carried out, presenting new methodological clues and assessments. The DFT is not perfectly adequate for lanthanide systems because of orbital pseudodegeneracy issues. However, we show that in particular circumstances the DFT can be partly used, succeeding here in mimicking different orbital configurations of the Ni-Tb system. The DFT seems to offer reasonable estimations of exchange coupling parameters, while it remains problematic in the complete account of Ligand Field splitting. The Paper presents unprecedented methodological advances and correlations with phenomenological and heuristic interpretation of experimental data, taking into focus relevant d-f systems constructed with a prototypical binucleating ligand.


Materials | 2013

Density Functional Theory (DFT) Study of Coumarin-based Dyes Adsorbed on TiO2 Nanoclusters—Applications to Dye-Sensitized Solar Cells

Corneliu I. Oprea; Petre Panait; Fanica Cimpoesu; Marilena Ferbinteanu; Mihai A. Gîrţu

Coumarin-based dyes have been successfully used in dye-sensitized solar cells, leading to photovoltaic conversion efficiencies of up to about 8%. Given the need to better understand the behavior of the dye adsorbed on the TiO2 nanoparticle, we report results of density functional theory (DFT) and time-dependent DFT (TD-DFT) studies of several coumarin-based dyes, as well as complex systems consisting of the dye bound to a TiO2 cluster. We provide the electronic structure and simulated UV-Vis spectra of the dyes alone and adsorbed to the cluster and discuss the matching with the solar spectrum. We display the energy level diagrams and the electron density of the key molecular orbitals and analyze the electron transfer from the dye to the oxide. Finally, we compare our theoretical results with the experimental data available and discuss the key issues that influence the device performance.


Polyhedron | 1999

Synthesis, crystal structure and magnetic properties of the cyano-bridged heteropolynuclear complex [{(Cu(dien))2Co(CN)6}n][Cu(dien)(H2O)Co(CN)6]n·5nH2O

Marilena Ferbinteanu; Stefania Tanase; Marius Andruh; Yves Journaux; Fanica Cimpoesu; Irina Strenger; Eric Rivière

Abstract The reaction of [Cu(dien)(H2O)](NO3)2 with K3[Co(CN)6] leads to the cyano-bridged heteropolynuclear complex, [{(Cu(dien))2Co(CN)6}n][Cu(dien)(H2O)Co(CN)6]n·5nH2O, {Cu3Co2}, whose crystal structure has been solved. The structure consists of two distinct ionic units, namely one-dimensional cationic chains [{(Cu(dien))2Co(CN)6}n]n+, and discrete binuclear anionic entities [(H2O)(dien)Cu–NC–Co(CN)5]−. The cryomagnetic investigation of the title compound reveals a very weak antiferromagnetic coupling between the Cu(II) ions within the cationic chain (J=−1.02 cm−1, g=2.14). The complete elimination of the water molecules from the isomorphous {Cu3Co2}, {Cu3Fe2} and {Cu3Cr2} complexes causes the modification of the magnetic properties. The most dramatic one is observed with the Cu(II)–Fe(III) system, where the magnetic behavior changes from ferro- to antiferromagnetic. The dehydrated chromium derivative preserves the ferromagnetic coupling, which is observed at lower temperatures (below 30 K) in comparison with the parent compound (below 150 K).


Physical Chemistry Chemical Physics | 2013

Ligand field density functional theory calculation of the 4f2 → 4f15d1 transitions in the quantum cutter Cs2KYF6:Pr3+

Harry Ramanantoanina; Werner Urland; Fanica Cimpoesu; Claude Daul

Herein we present a Ligand Field Density Functional Theory (LFDFT) based methodology for the analysis of the 4f(n)→ 4f(n-1)5d(1) transitions in rare earth compounds and apply it for the characterization of the 4f(2)→ 4f(1)5d(1) transitions in the quantum cutter Cs2KYF6:Pr(3+) with the elpasolite structure type. The methodological advances are relevant for the analysis and prospection of materials acting as phosphors in light-emitting diodes. The positions of the zero-phonon energy corresponding to the states of the electron configurations 4f(2) and 4f(1)5d(1) are calculated, where the praseodymium ion may occupy either the Cs(+)-, K(+)- or the Y(3+)-site, and are compared with available experimental data. The theoretical results show that the occupation of the three undistorted sites allows a quantum-cutting process. However size effects due to the difference between the ionic radii of Pr(3+) and K(+) as well as Cs(+) lead to the distortion of the K(+)- and the Cs(+)-site, which finally exclude these sites for quantum-cutting. A detailed discussion about the origin of this distortion is also described.


Inorganic Chemistry | 2012

Structure and Magnetism in Fe–Gd Based Dinuclear and Chain Systems. The Interplay of Weak Exchange Coupling and Zero Field Splitting Effects

Marilena Ferbinteanu; Fanica Cimpoesu; Mihai A. Gîrţu; Cristian Enachescu; Stefania Tanase

The synthesis and characterization of two Fe-Gd systems based on bpca(-) (Hbpca = bis(2-pyridilcarbonyl)amine) as bridging ligand is presented, taking the systems as a case study for structure-property correlations. Compound 1, [Fe(LS)(II)(μ-bpca)(2)Gd(NO(3))(2)(H(2)O)]NO(3)·2CH(3)NO(2), is a zigzag polymer, incorporating the diamagnetic low spin Fe(LS)(II) ion. The magnetism of 1 is entirely determined by the weak zero field splitting (ZFS) effect on the Gd(III) ion. Compound 2 is a Fe(III)-Gd(III) dinuclear compound, [Fe(LS)(III)(bpca)(μ-bpca)Gd(NO(3))(4)]·4CH(3)NO(2)·CH(3)OH, its magnetism being interpreted as due to the antiferromagnetic coupling between the S(Fe) = ½ and S(Gd) = 7/2 spins, interplayed with the local ZFS on the lanthanide center. In both systems, the d-f assembly is determined by the bridging capabilities of the ambidentate bpca(-) ligand, which binds the d ion by a tridentate moiety with nitrogen donors and the f center by the diketonate side. We propose a spin delocalization and polarization mechanism that rationalizes the factors leading to the antiferromagnetic d-f coupling. Although conceived for compound 2, the scheme can be proposed as a general mechanism. The rationalization of the weak ZFS effects on Gd(III) by multiconfiguration and spin-orbit ab initio calculations allowed us to determine the details of the small but still significant anisotropy of Gd(III) ion in the coordination sites of compounds 1 and 2. The outlined methodologies and generalized conclusions shed new light on the field of gadolinium coordination magnetochemistry.


Inorganic Chemistry | 2015

Prospecting Lighting Applications with Ligand Field Tools and Density Functional Theory: A First-Principles Account of the 4f7–4f65d1 Luminescence of CsMgBr3:Eu2+

Harry Ramanantoanina; Fanica Cimpoesu; Christian Göttel; Mohammed Sahnoun; Benjamin Herden; Markus Suta; Claudia Wickleder; Werner Urland; Claude Daul

The most efficient way to provide domestic lighting nowadays is by light-emitting diodes (LEDs) technology combined with phosphors shifting the blue and UV emission toward a desirable sunlight spectrum. A route in the quest for warm-white light goes toward the discovery and tuning of the lanthanide-based phosphors, a difficult task, in experimental and technical respects. A proper theoretical approach, which is also complicated at the conceptual level and in computing efforts, is however a profitable complement, offering valuable structure-property rationale as a guideline in the search of the best materials. The Eu(2+)-based systems are the prototypes for ideal phosphors, exhibiting a wide range of visible light emission. Using the ligand field concepts in conjunction with density functional theory (DFT), conducted in nonroutine manner, we develop a nonempirical procedure to investigate the 4f(7)-4f(6)5d(1) luminescence of Eu(2+) in the environment of arbitrary ligands, applied here on the CsMgBr3:Eu(2+)-doped material. Providing a salient methodology for the extraction of the relevant ligand field and related parameters from DFT calculations and encompassing the bottleneck of handling large matrices in a model Hamiltonian based on the whole set of 33,462 states, we obtained an excellent match with the experimental spectrum, from first-principles, without any fit or adjustment. This proves that the ligand field density functional theory methodology can be used in the assessment of new materials and rational property design.


Inorganic Chemistry | 2011

Rationalization of the lanthanide-ion-driven magnetic properties in a series of 4f-5d cyano-bridged chains.

Stefania Tanase; Marilena Ferbinteanu; Fanica Cimpoesu

Magnetic properties of new d-f cyanido-bridged 1D assemblies [RE(pzam)(3)(H(2)O)W(CN)(8)]·H(2)O (RE(III) = Gd, 1, Tb, 2, Dy, 3; pzam = pyrazine-2-carboxamide) were studied by temperature- and field-dependent magnetization measurements. No evidence for 3D interchain magnetic ordering is found above 2 K. Multiconfiguration ab initio calculations and subsequent modeling afforded simulation of the weak zero-field splitting effect in 1 and discussion of magnetic anisotropy in the f units of compounds 2 and 3. A semiquantitative corroboration with the experimental magnetic measurements is presented, performing the simulation of magnetic susceptibility vs temperature and magnetization vs field variation. The association into molecular and supramolecular architectures is analyzed by means of energy decomposition subsequent to the DFT calculations on idealized molecular models extracted from the experimental chain structure.


Central European Journal of Chemistry | 2010

Noncovalent effects in the coordination and assembling of the[Fe(bpca)2][Er(NO3)3(H2O)4]NO3 system

Marilena Ferbinteanu; Alina Zaharia; Mihai A. Gîrţu; Fanica Cimpoesu

AbstractIn this work we perform a detailed analysis of the non-covalent effects that build the lattice of the [Fe(bpca)2][Er(NO3)3(H2O)4]NO3 compound, made of cationic d units [Fe(bpca)2]+,(where Hbpca is bis(2-pyridilcarbonyl)amine), neutral f complexes [Er(NO3)3(H2O)4], and the NO3- counter-ion. All these units are interlinked by hydrogen bonds, their assembling benefiting also from electrostatic effects. A particularly interesting sub-ensemble of the crystal is the linear chain formed by the lanthanide units. Going beyond the usual qualitative description of the supramolecular assembling, we performed electron structure calculations on appropriate models related to the experimental structures. The formation energies of d and f coordination bonds are estimated in semi-quantitative manner, being compared with the intermolecular ones, due to hydrogen bonding and dipolar interactions.


Molecular Physics | 2015

On exchange coupling and bonding in the Gd2@C80 and Gd2@C79N endohedral dimetallo-fullerenes

Fanica Cimpoesu; Bogdan Frecus; Corneliu I. Oprea; Harry Ramanantoanina; Werner Urland; Claude Daul

A series of computational experiments performed with various methods belonging to wave-function and density functional theories approaches the issue of bonding regime and exchange coupling in the title compounds. Gd2@C80 is computed with a very weak exchange coupling, the sign depending on the method, while Gd2@C79N has resulted with a strong coupling and ferromagnetic ground state, irrespective of the computational approach. The multi-configuration calculation and broken symmetry estimation are yielding closely coincident coupling constants, of about J ∼ 400 cm−1. No experimental estimation exists, but the ferromagnetic ground state of Gd2@C79N is confirmed from paramagnetic resonance data. The different behaviour is due to particularities of electron accommodation in the orbital scheme. The exchange effects localised on atom lead to preference for parallel alignment of the electrons placed in the 4f and 5d lanthanide shells, determining also a ferromagnetic inter-centre coupling. The structural insight is completed with a ligand field analysis of the density functional theory results in the context of frozen density embedding. The energy decomposition analysis of bonding effects is also discussed. Finally, with the help of home-made codes (named Xatom+Xsphere), a model for the atom encapsulated in a cage is designed, the exemplified numeric experiments showing relevance for the considered endohedral metallo-fullerene issues.


Structure and Bonding | 2014

Metal-Organic Frameworks with d-f Cyanide Bridges: Structural Diversity, Bonding Regime, and Magnetism

Marilena Ferbinteanu; Fanica Cimpoesu; Stefania Tanase

We present a selection of metal-organic frameworks based on d–f and f–f linkages, discussing their structural features and properties from experimental and theoretical viewpoints. We give an overview of our own synthetic and modeling methodologies, highlighting the complexity of the interdisciplinary approach developed. Significant experimental and computational strategies of other researchers are also reviewed. The bonding regime of lanthanide units in MOFs is similar to those encountered in mono- or polynuclear f-type coordination compounds. However, the steric demands of constructing a three-dimensional network determine specific ligand composition and topologies at the local f nodes. Due to weak interaction propensity of the inner shell f orbitals, the electronic structure treatments of lanthanide units require certain conceptual and technical subtleties. With proper handling, multiconfiguration wave function approaches as well as density functional theory (DFT) treatments can be analyzed in terms of meaningful ligand field (LF) modeling. The interplay of LF and spin–orbit (SO) effects in determining the magnetic anisotropy is illustrated, after reviewing the experimental magnetic behavior of several d–f cyanide-bridged systems.

Collaboration


Dive into the Fanica Cimpoesu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bogdan Frecus

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mihai V. Putz

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Claude Daul

University of Fribourg

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge