Fanja Rabenoelina
University of Reims Champagne-Ardenne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fanja Rabenoelina.
Plant Cell and Environment | 2009
Anne-Lise Varnier; Lisa Sanchez; Parul Vatsa; Leslie Boudesocque; Angela Garcia-Brugger; Fanja Rabenoelina; Alexander P. Sorokin; Jean-Hugues Renault; Serge Kauffmann; Alain Pugin; Christophe Clément; Fabienne Baillieul; Stéphan Dorey
Rhamnolipids produced by the bacteria Pseudomonas aeruginosa are known as very efficient biosurfactant molecules. They are used for a wide range of industrial applications, especially in food, cosmetics and pharmaceutical formulations as well as in bioremediation of pollutants. In this paper, the role of rhamnolipids as novel molecules triggering defence responses and protection against the fungus Botrytis cinerea in grapevine is presented. The effect of rhamnolipids was assessed in grapevine using cell suspension cultures and vitro-plantlets. Ca(2+) influx, mitogen-activated protein kinase activation and reactive oxygen species production form part of early signalling events leading from perception of rhamnolipids to the induction of plant defences that include expression of a wide range of defence genes and a hypersensitive response (HR)-like response. In addition, rhamnolipids potentiated defence responses induced by the chitosan elicitor and by the culture filtrate of B. cinerea. We also demonstrated that rhamnolipids have direct antifungal properties by inhibiting spore germination and mycelium growth of B. cinerea. Ultimately, rhamnolipids efficiently protected grapevine against the fungus. We propose that rhamnolipids are acting as microbe-associated molecular patterns (MAMPs) in grapevine and that the combination of rhamnolipid effects could participate in grapevine protection against grey mould disease.
Journal of Experimental Botany | 2013
Gaëlle Le Hénanff; Camille Profizi; Barbara Courteaux; Fanja Rabenoelina; Clémentine Gérard; Christophe Clément; Fabienne Baillieul; Sylvain Cordelier; Sandrine Dhondt-Cordelier
Transcription factors of the NAC family are known to be involved in various developmental processes and in response to environmental stresses. Whereas NAC genes have been widely studied in response to abiotic stresses, little is known about their role in response to biotic stresses, especially in crops. Here, the first characterization of a Vitis vinifera L. NAC member, named VvNAC1, and involved in organ development and defence towards pathogens is reported. Expression profile analysis of VvNAC1 showed that its expression is closely associated with later stages of leaf, flower, and berry development, suggesting a role in plant senescence. Moreover, VvNAC1 expression is stimulated in Botrytis cinerea- or microbe-associated molecular pattern (MAMP)-infected berries or leaves. Furthermore, cold, wounding, and defence-related hormones such as salicylic acid, methyl jasmonate, ethylene, and abscisic acid are all able to induce VvNAC1 expression in grapevine leaves. VvNAC1-overexpressing Arabidopsis plants exhibit enhanced tolerance to osmotic, salt, and cold stresses and to B. cinerea and Hyaloperonospora arabidopsidis pathogens. These plants present a modified pattern of defence gene markers (AtPR-1, AtPDF1.2, and AtVSP1) after stress application, suggesting that VvNAC1 is an important regulatory component of the plant signalling defence cascade. Collectively, these results provide evidence that VvNAC1 could represent a node of convergence regulating grapevine development and stress responses, including defence against necrotrophic and biotrophic pathogens.
Journal of Experimental Botany | 2015
Saloua Hatmi; Charlotte Gruau; Patricia Trotel-Aziz; Sandra Villaume; Fanja Rabenoelina; Fabienne Baillieul; Philippe Eullaffroy; Christophe Clément; Ali Ferchichi; Aziz Aziz
Environmental factors including drought stress may modulate plant immune responses and resistance to pathogens. However, the relationship between mechanisms of drought tolerance and resistance to pathogens remained unknown. In this study, the effects of drought stress on polyamine (PA) homeostasis and immune responses were investigated in two grapevine genotypes differing in their drought tolerance; Chardonnay (CHR), as sensitive and Meski (MSK), as tolerant. Under drought conditions, MSK plants showed the lowest leaf water loss and reduction of photosynthetic efficiency, and expressed a lower level of NCED2, a gene involved in abscisic acid biosynthesis, compared with CHR plants. The improved drought tolerance in MSK was also coincident with the highest change in free PAs and up-regulation of the genes encoding arginine decarboxylase (ADC), copper amine-oxidase (CuAO), and PA-oxidases (PAO) and their corresponding enzyme activities. MSK plants also accumulated the highest level of amino acids, including Arg, Glu, Gln, Pro, and GABA, emphasizing the participation of PA-related amino acid homeostasis in drought tolerance. Importantly, drought-tolerant plants also exhibited enhanced phytoalexin accumulation and up-regulation of PR genes, especially PR-2 and Chit4c, compared with the sensitive plants. This is consistent with a lower susceptibility of MSK than CHR to Botrytis cinerea. Data suggest a possible connection between water stress tolerance and immune response in grapevine. Pharmacological experiments revealed that under drought conditions CuAO and PAO pathways were involved in the regulation of photosynthetic efficiency, and also of immune response and resistance of grapevine to a subsequent pathogen attack. These results open new views to improve our understanding of crosstalk between drought tolerance mechanisms and immune response.
Diabetes | 2013
Sébastien Blaise; Béatrice Romier; Charlotte Kawecki; Maxime Ghirardi; Fanja Rabenoelina; Stéphanie Baud; Laurent Duca; Pascal Maurice; Andrea Heinz; Christian E.H. Schmelzer; Michel Tarpin; Laurent Martiny; Christian Garbar; Manuel Dauchez; Laurent Debelle; Vincent Durlach
Although it has long been established that the extracellular matrix acts as a mechanical support, its degradation products, which mainly accumulate during aging, have also been demonstrated to play an important role in cell physiology and the development of cardiovascular and metabolic diseases. In the current study, we show that elastin-derived peptides (EDPs) may be involved in the development of insulin resistance (IRES) in mice. In chow-fed mice, acute or chronic intravenous injections of EDPs induced hyperglycemic effects associated with glucose uptake reduction and IRES in skeletal muscle, liver, and adipose tissue. Based on in vivo, in vitro, and in silico approaches, we propose that this IRES is due to interaction between the insulin receptor (IR) and the neuraminidase-1 subunit of the elastin receptor complex triggered by EDPs. This interplay was correlated with decreased sialic acid levels on the β-chain of the IR and reduction of IR signaling. In conclusion, this is the first study to demonstrate that EDPs, which mainly accumulate with aging, may be involved in the insidious development of IRES.
Functional Plant Biology | 2011
Maryline Magnin-Robert A; Patricia Letousey A; Alessandro Spagnolo; Fanja Rabenoelina; Lucile Jacquens; Laurence Mercier; Christophe Clément; Florence Fontaine
Esca is a destructive disease in grapevines (Vitis vinifera L.) caused by at least three fungi and characterised by two different external symptoms, the apoplectic and leaf stripe form. This latter form can be discerned as soon as symptoms become visible, but the preceding discrete signs during incubation are poorly or not understood. To further understand the development of the leaf stripe form, the period preceding and following the appearance of symptoms was investigated by studying physiological and molecular markers associated with photosynthetic mechanisms and stress response. No perturbation of any targeted metabolism was observed in asymptomatic leaves of asymptomatic canes from vines showing the leaf stripe form of esca. Conversely, drastic alterations of photosynthesis functions were registered in presymptomatic leaves, as revealed by the decrease of gas exchange and chlorophyll fluorescence, and the repression of photosynthesis-related genes. These alterations were amplified during symptom development. Expression of defence-related genes was affected and detected early in presymptomatic leaves and amplified during symptom expression. Our results suggest that grapevines may react precociously by reducing photosynthesis and triggering defence mechanisms in response to the leaf stripe form of esca.
Frontiers in Plant Science | 2015
Fan Su; Cédric Jacquard; Sandra Villaume; Jean Michel; Fanja Rabenoelina; Christophe Clément; Essaid Ait Barka; Sandrine Dhondt-Cordelier; Nathalie Vaillant-Gaveau
Several plant growth-promoting rhizobacteria (PGPR) are known to improve plant tolerance to multiple stresses, including low temperatures. However, mechanisms underlying this protection are still poorly understood. The aim of this study was to evaluate the role of the endophytic PGPR, Burkholderia phytofirmans strain PsJN (Bp PsJN), on Arabidopsis thaliana cold tolerance using photosynthesis parameters as physiological markers. Under standard conditions, our results indicated that Bp PsJN inoculation led to growth promotion of Arabidopsis plants without significant modification on photosynthesis parameters and chloroplast organization. However, bacterial colonization induced a cell wall strengthening in the mesophyll. Impact of inoculation modes (either on seeds or by soil irrigation) and their effects overnight at 0, -1, or -3°C, were investigated by following photosystem II (PSII) activity and gas exchanges. Following low temperatures stress, a decrease of photosynthesis parameters was observed. In addition, during three consecutive nights or days at -1°C, PSII activity was monitored. Pigment contents, RuBisCO protein abundance, expression of several genes including RbcS, RbcL, CBF1, CBF2, CBF3, ICE1, COR15a, and COR78 were evaluated at the end of exposure. To assess the impact of the bacteria on cell ultrastructure under low temperatures, microscopic observations were achieved. Results indicated that freezing treatment induced significant changes in PSII activity as early as the first cold day, whereas the same impact on PSII activity was observed only during the third cold night. The significant effects conferred by PsJN were differential accumulation of pigments, and reduced expression of RbcL and COR78. Microscopical observations showed an alteration/disorganization in A. thaliana leaf mesophyll cells independently of the freezing treatments. The presence of bacteria during the three successive nights or days did not significantly improved A. thaliana responses but prevented the plasmalemma disruption under freezing stress.
Molecular Plant-microbe Interactions | 2015
Charlotte Gruau; Patricia Trotel-Aziz; Sandra Villaume; Fanja Rabenoelina; Christophe Clément; Fabienne Baillieul; Aziz Aziz
Although induced systemic resistance (ISR) is well-documented in the context of plant-beneficial bacteria interactions, knowledge about the local and systemic molecular and biochemical defense responses before or upon pathogen infection in grapevine is very scarce. In this study, we first investigated the capacity of grapevine plants to express immune responses at both above- and below-ground levels upon interaction with a beneficial bacterium, Pseudomonas fluorescens PTA-CT2. We then explored whether the extent of priming state could contribute to the PTA-CT2-induced ISR in Botrytis cinerea-infected leaves. Our data provide evidence that this bacterium colonized grapevine roots but not the above-ground plant parts and altered the plant phenotype that displayed multiple defense responses both locally and systemically. The grapevine roots and leaves exhibited distinct patterns of defense-related gene expression during root colonization by PTA-CT2. Roots responded faster than leaves and some responses were more strongly upregulated in roots than in leaves and vice versa for other genes. These responses appear to be associated with some induction of cell death in roots and a transient expression of HSR, a hypersensitive response-related gene in both local (roots) and systemic (leaves) tissues. However, stilbenic phytoalexin patterns followed opposite trends in roots compared with leaves but no phytoalexin was exuded during plant-bacterium interaction, suggesting that roots could play an important role in the transfer of metabolites contributing to immune response at the systemic level. Unexpectedly, in B. cinerea-infected leaves PTA-CT2-mediated ISR was accompanied in large part by a downregulation of different defense-related genes, including HSR. Only phytoalexins and glutathion-S-transferase 1 transcripts were upregulated, while the expression of anthocyanin biosynthetic genes was maintained at a higher level than the control. This suggests that decreased expression of HSR, as a marker of cell death, and activation of secondary metabolism pathways could be responsible for a reduced B. cinerea colonization capacity in bacterized plants.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2014
Charlotte Kawecki; Nathalie Hézard; Olivier Bocquet; Gaël Poitevin; Fanja Rabenoelina; Alexandre Kauskot; Laurent Duca; Sébastien Blaise; Béatrice Romier; Laurent Martiny; Philippe Nguyen; Laurent Debelle; Pascal Maurice
Objective— Elastin is the major structural extracellular matrix component of the arterial wall that provides the elastic recoil properties and resilience essential for proper vascular function. Elastin-derived peptides (EDP) originating from elastin fragmentation during vascular remodeling have been shown to play an important role in cell physiology and development of cardiovascular diseases. However, their involvement in thrombosis has been unexplored to date. In this study, we investigated the effects of EDP on (1) platelet aggregation and related signaling and (2) thrombus formation. We also characterized the mechanism by which EDP regulate thrombosis. Approach and Results— We show that EDP, derived from organo-alkaline hydrolysate of bovine insoluble elastin (kappa-elastin), decrease human platelet aggregation in whole blood induced by weak and strong agonists, such as ADP, epinephrine, arachidonic acid, collagen, TRAP, and U46619. In a mouse whole blood perfusion assay over a collagen matrix, kappa-elastin and VGVAPG, the canonical peptide recognizing the elastin receptor complex, significantly decrease thrombus formation under arterial shear conditions. We confirmed these results in vivo by demonstrating that both kappa-elastin and VGVAPG significantly prolonged the time for complete arteriole occlusion in a mouse model of thrombosis and increased tail bleeding times. Finally, we demonstrate that the regulatory role of EDP on thrombosis relies on platelets that express a functional elastin receptor complex and on the ability of EDP to disrupt plasma von Willebrand factor interaction with collagen. Conclusions— These results highlight the complex nature of the mechanisms governing thrombus formation and reveal an unsuspected regulatory role for circulating EDP in thrombosis.
Photosynthesis Research | 2017
Fan Su; Sandra Villaume; Fanja Rabenoelina; Jérôme Crouzet; Christophe Clément; Nathalie Vaillant-Gaveau; Sandrine Dhondt-Cordelier
Pathogen infection of plant results in modification of photosynthesis and defense mechanisms. Beneficial microorganisms are known to improve plant tolerance to stresses. Burkholderia phytofirmans PsJN (Bp), a beneficial endophytic bacterium, promotes growth of a wide range of plants and induces plant resistance against abiotic and biotic stresses such as coldness and infection by a necrotrophic pathogen. However, mechanisms underlying its role in plant tolerance towards (hemi)biotrophic invaders is still lacking. We thus decipher photosynthetic and defense responses during the interaction between Arabidopsis, Bp and the hemibiotrophic bacterium Pseudomonas syringae pv. tomato DC3000 (Pst). Different Bp inoculations allowed analyzes at both systemic and local levels. Despite no direct antibacterial action, our results showed that only local presence of Bp alleviates Pst growth in planta during the early stage of infection. Molecular investigations showed that seed inoculation of Bp, leading to a restricted presence in the root system, transiently primed PR1 expression after challenge with Pst but continuously primed PDF1.2 expression. Bacterization with Bp reduced Y(ND) but had no impact on PSII activity or RuBisCO accumulation. Pst infection caused an increase of Y(NA) and a decrease in ΦPSI, ETRI and in PSII activity, showed by a decrease in Fv/Fm, Y(NPQ), ΦPSII, and ETRII values. Inoculation with both bacteria did not display any variation in photosynthetic activity compared to plants inoculated with only Pst. Our findings indicated that the role of Bp here is not multifaceted, and relies only on priming of defense mechanisms but not on improving photosynthetic activity.
Investigational New Drugs | 2011
Jérôme Devy; Farid Ouchani; Christelle Oudot; Jean Jacques Helesbeux; Enguerran Vanquelef; Stéphanie Salesse; Fanja Rabenoelina; Siana Al-Khara; Isabelle Letinois; Olivier Duval; Laurent Martiny; Emmanuelle Charpentier
SummaryQuaternary benzo[c]phenanthridines such as fagaronine are natural substances which have been reported to exhibit anticancer and anti-leukemic properties. However, the therapeutic use of these molecules is limited due to the high dose required to exhibit anti-tumor activity and subsequent toxicity. In this study, we describe the therapeutic potential of a new derivative of fagaronine, Ethoxyfagaronine (N-methyl-12-ethoxy-2hydroxy-3, 8, 9-trimethoxybenzo[c]-phenanthridiniumchlorhydrate) as an anti-leukemic agent. Cytotoxic activity and cell growth inhibition of Ethoxyfagaronine (Etxfag) was tested on murine L1210 leukemia cells using trypan blue assay and MTT assay. At the concentration of 10−7 M, Etxfag induced less than 10% of cell death. Etxfag (10−7 M) was tested on L1210 cell invasiveness using matrigel™ precoated transwell chambers and efficiently reduces the invasive potential of L1210 cells by more than 50% as compared with untreated cells. Western blot and immunofluorescence experiments showed that Etxfag decreased both MT1-MMP expression and activation at the cell surface, decreased plasmin activity by down-regulating u-PAR and uPA expression at the cell surface and increasing PAI-1 secretion in conditioned media. The set of our findings underscore the therapeutic potential of ethoxyfagaronine as a new potential anticancer agent able to prevent leukemic cell dissemination.