Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fanny Garel is active.

Publication


Featured researches published by Fanny Garel.


Geochemistry Geophysics Geosystems | 2014

Interaction of subducted slabs with the mantle transition‐zone: A regime diagram from 2‐D thermo‐mechanical models with a mobile trench and an overriding plate

Fanny Garel; Saskia Goes; David Davies; John Huw Davies; Stephan C. Kramer; C. R. Wilson

Transition zone slab deformation influences Earths thermal, chemical and tectonic evolution. However, the mechanisms responsible for the wide-range of imaged slab morphologies remain debated. Here, we use 2-D thermo-mechanical models with a mobile trench, an overriding plate, a temperature- and stress-dependent rheology, and a 10, 30 or 100-fold increase in lower mantle viscosity, to investigate the effect of initial subducting- and overriding-plate ages on slab transition-zone interaction. Four subduction styles emerge: (i) a “vertical folding” mode, with a quasi-stationary trench, near-vertical subduction and buckling/folding at depth (VF); (ii) slabs that induce mild trench retreat, which are flattened/“horizontally deflected” and stagnate at the upper-lower mantle interface (HD); (iii) inclined slabs, which result from rapid sinking and strong trench retreat (ISR); (iv) a two-stage mode, displaying backward-bent and subsequently inclined slabs, with late trench retreat (BIR). Transitions from regime (i) to (iii) occur with increasing subducting-plate age (i.e. buoyancy and strength). Regime (iv) develops for old (strong) subducting and overriding plates. We find that the interplay between trench motion and slab deformation at depth dictate the subduction style, both being controlled by slab strength, which is consistent with predictions from previous compositional subduction models. However, due to feedbacks between deformation, sinking rate, temperature and slab strength, the subducting-plate buoyancy, overriding-plate strength and upper-lower mantle viscosity jump are also important controls in thermo-mechanical subduction. For intermediate upper-lower mantle viscosity jumps (×30), our regimes reproduce the diverse range of seismically imaged slab morphologies.


Journal of Geophysical Research | 2012

An experimental study of the surface thermal signature of hot subaerial isoviscous gravity currents: Implications for thermal monitoring of lava flows and domes

Fanny Garel; Edouard Kaminski; S. Tait; Angela Limare

Received 22 July 2011; revised 23 November 2011; accepted 23 November 2011; published 7 February 2012. [1] Management of eruptions requires a knowledge of lava effusion rates, for which a safe thermal proxy is often used. However, this thermal proxy does not take into account the flow dynamics and is basically time-independent. In order to establish a more robust framework that can link eruption rates and surface thermal signals of lavas measured remotely, we investigate the spreading of a hot, isoviscous, axisymmetric subaerial gravity current injected at constant rate from a point source onto a horizontal substrate. We performed laboratory experiments and found that the surface thermal structure became steady after an initial transient. We develop a theoretical model for a spreading fluid cooled by radiation and convection at its surface that also predicts a steady thermal regime. We show that, despite the model’s simplicity relative to lava flows, it yields the correct order of magnitude for the effusion rate required to produce the radiant flux measured on natural lava flows. For typical thermal lava properties and an effusion rate between 0.1 and 10 m 3 s � 1 , the model predicts a steady radiated heat flux ranging from 10 8 to 10 10 W. The assessed effusion rate varies quasi-linearly with the steady heat flux, with much weaker dependence on the flow viscosity. This relationship is valid only after a transient time which scales as the diffusive time, ranging from a few days for small basaltic flows to several years for lava domes. The thermal proxy appears thus less reliable to follow sharp variations of the effusion rate during an eruption.


Geosphere | 2017

Subduction-transition zone interaction: a review

Saskia Goes; Roberto Agrusta; Jeroen van Hunen; Fanny Garel

As subducting plates reach the base of the upper mantle, some appear to flatten and stagnate, while others seemingly go through unimpeded. This variable resistance to slab sinking has been proposed to affect long-term thermal and chemical mantle circulation. A review of observational constraints and dynamic models highlights that neither the increase in viscosity between upper and lower mantle (likely by a factor 20–50) nor the coincident endothermic phase transition in the main mantle silicates (with a likely Clapeyron slope of –1 to –2 MPa/K) suffice to stagnate slabs. However, together the two provide enough resistance to temporarily stagnate subducting plates, if they subduct accompanied by significant trench retreat. Older, stronger plates are more capable of inducing trench retreat, explaining why backarc spreading and flat slabs tend to be associated with old-plate subduction. Slab viscosities that are ∼2 orders of magnitude higher than background mantle (effective yield stresses of 100–300 MPa) lead to similar styles of deformation as those revealed by seismic tomography and slab earthquakes. None of the current transition-zone slabs seem to have stagnated there more than 60 m.y. Since modeled slab destabilization takes more than 100 m.y., lower-mantle entry is apparently usually triggered (e.g., by changes in plate buoyancy). Many of the complex morphologies of lower-mantle slabs can be the result of sinking and subsequent deformation of originally stagnated slabs, which can retain flat morphologies in the top of the lower mantle, fold as they sink deeper, and eventually form bulky shapes in the deep mantle.


Geological Society, London, Special Publications | 2016

Benchmarking lava-flow models

B. Cordonnier; E. Lev; Fanny Garel

Abstract Prediction of the emplacement of volcanic mass flows (lava flows, pyroclastic density currents, debris avalanches and debris flows) is required for hazard and risk assessment, and for the planning of risk-mitigation measures. Numerical computer-based models now exist that are capable of approximating the motion of a given volume of volcanic material from its source to the deposition area. With these advances in technology, it is useful to compare the various codes in order to evaluate their respective suitability for real-time forecasting, risk preparedness and post-eruptive response. A ‘benchmark’ compares codes or methods, all aimed at simulating the same physical process using common initial and boundary conditions and outputs, but using different physical formulations, mathematical approaches and numerical techniques. We set up the basis for a future general benchmarking exercise on volcanic mass-flow models and, more specifically, establish a benchmark series for computational lava-flow modelling. We describe a set of benchmarks in this paper, and present a few sample results to demonstrate output analysis and code evaluation methodologies. The associated web-based communal facility for sharing test scenarios and results is also described.


Geological Society, London, Special Publications | 2016

Conclusion: recommendations and findings of the RED SEED working group

Andrew J. L. Harris; Simon A. Carn; J. Dehn; C. Del Negro; M. T. Guđmundsson; B. Cordonnier; Talfan Barnie; E. Chahi; S. Calvari; T. Catry; T. De Groeve; D. Coppola; Ashley Gerard Davies; M. Favalli; Fabrizio Ferrucci; E. Fujita; G. Ganci; Fanny Garel; P. Huet; James P. Kauahikaua; Karim Kelfoun; V. Lombardo; G. Macedonio; José Pacheco; Matthew R. Patrick; Nicola Pergola; Michael S. Ramsey; Rocco Rongo; F. Sahy; K. Smith

Abstract RED SEED stands for Risk Evaluation, Detection and Simulation during Effusive Eruption Disasters, and combines stakeholders from the remote sensing, modelling and response communities with experience in tracking volcanic effusive events. The group first met during a three day-long workshop held in Clermont Ferrand (France) between 28 and 30 May 2013. During each day, presentations were given reviewing the state of the art in terms of (a) volcano hot spot detection and parameterization, (b) operational satellite-based hot spot detection systems, (c) lava flow modelling and (d) response protocols during effusive crises. At the end of each presentation set, the four groups retreated to discuss and report on requirements for a truly integrated and operational response that satisfactorily combines remote sensors, modellers and responders during an effusive crisis. The results of collating the final reports, and follow-up discussions that have been on-going since the workshop, are given here. We can reduce our discussions to four main findings. (1) Hot spot detection tools are operational and capable of providing effusive eruption onset notice within 15 min. (2) Spectral radiance metrics can also be provided with high degrees of confidence. However, if we are to achieve a truly global system, more local receiving stations need to be installed with hot spot detection and data processing modules running on-site and in real time. (3) Models are operational, but need real-time input of reliable time-averaged discharge rate data and regular updates of digital elevation models if they are to be effective; the latter can be provided by the radar/photogrammetry community. (4) Information needs to be provided in an agreed and standard format following an ensemble approach and using models that have been validated and recognized as trustworthy by the responding authorities. All of this requires a sophisticated and centralized data collection, distribution and reporting hub that is based on a philosophy of joint ownership and mutual trust. While the next chapter carries out an exercise to explore the viability of the last point, the detailed recommendations behind these findings are detailed here.


Geological Society, London, Special Publications | 2016

A fluid dynamics perspective on the interpretation of the surface thermal signal of lava flows

Fanny Garel; Edouard Kaminski; S. Tait; Angela Limare

Abstract Effusion rate is a crucial parameter for the prediction of lava-flow advance and should be assessed in near real-time in order to better manage a volcanic crisis. Thermal remote sensing offers the most promising avenue to attain this goal. We present here a ‘dynamic’ thermal proxy based on laboratory experiments and on the physical framework of viscous gravity currents, which can be used to estimate the effusion rate from thermal remote sensing during an eruption. This proxy reproduces the first-order relationship between effusion rate measured in the field and associated powers radiated by basaltic lava flows. Laboratory experiments involving fluids with complex rheology and subject to solidification give additional insights into the dynamics of lava flows. The introduction of a time evolution of the supply rates during the experiments gives rise to a transient adjustment of the surface thermal signal that further compromises the simple proportionality between the thermal flux and the effusion rate. Based on the experimental results, we conclude that a thermal proxy can only yield a minimum and time-averaged estimate of the effusion rate.


Geological Society, London, Special Publications | 2016

Risk evaluation, detection and simulation during effusive eruption disasters

Andrew J. L. Harris; Tom De Groeve; Simon A. Carn; Fanny Garel

Abstract Lava ingress into a vulnerable population will be difficult to control, so that evacuation will be necessary for communities in the path of the active lava, followed by post-event population, infrastructural, societal and community replacement and/or relocation. There is a pressing need to set up a response chain that bridges scientists and responders during an effusive crisis to allow near-real-time delivery of globally standard ‘products’ for a timely and adequate humanitarian response. In this chain, the scientific research groups investigating lava remote-sensing and modelling need to provide products that are both useful to, and trusted by, the crisis response community. Requirements for these products include (a) formats that can be immediately integrated into a crisis management procedure, and (b) in an agreed and stable standard. A review of current capability reveals that we are at a point where the community can provide such a response, as is the aim of the RED SEED (Risk Evaluation, Detection and Simulation during Effusive Eruption Disasters) working group. This book is the first production of this group and is intended not only as a directory of current capabilities and operational service providers, but also as a statement of intent and need, while providing a simulation designed to demonstrate how a truly pan-disciplinary response to an effusive crisis could work.


Bulletin of Volcanology | 2012

Scales of columnar jointing in igneous rocks: field measurements and controlling factors

György Hetényi; Benoit. Taisne; Fanny Garel; Etienne Médard; Sonja A. Bosshard; Hannes B. Mattsson


Earth and Planetary Science Letters | 2014

An analogue study of the influence of solidification on the advance and surface thermal signature of lava flows

Fanny Garel; Edouard Kaminski; S. Tait; Angela Limare


Earth and Planetary Science Letters | 2017

Age-independent seismic anisotropy under oceanic plates explained by strain history in the asthenosphere

Navid Hedjazian; Fanny Garel; D. Rhodri Davies; Edouard Kaminski

Collaboration


Dive into the Fanny Garel's collaboration.

Top Co-Authors

Avatar

Edouard Kaminski

Institut de Physique du Globe de Paris

View shared research outputs
Top Co-Authors

Avatar

Angela Limare

Institut de Physique du Globe de Paris

View shared research outputs
Top Co-Authors

Avatar

S. Tait

Institut de Physique du Globe de Paris

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Saskia Goes

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hannes B. Mattsson

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Sonja A. Bosshard

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Andrew J. L. Harris

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Simon A. Carn

Michigan Technological University

View shared research outputs
Researchain Logo
Decentralizing Knowledge