Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fanny Orlhac is active.

Publication


Featured researches published by Fanny Orlhac.


The Journal of Nuclear Medicine | 2014

Tumor Texture Analysis in 18F-FDG PET: Relationships Between Texture Parameters, Histogram Indices, Standardized Uptake Values, Metabolic Volumes, and Total Lesion Glycolysis

Fanny Orlhac; Michael Soussan; Jacques-Antoine Maisonobe; Camilo Garcia; Bruno Vanderlinden; Irène Buvat

Texture indices are of growing interest for tumor characterization in 18F-FDG PET. Yet, on the basis of results published in the literature so far, it is unclear which indices should be used, what they represent, and how they relate to conventional indices such as standardized uptake values (SUVs), metabolic volume (MV), and total lesion glycolysis (TLG). We investigated in detail 31 texture indices, 5 first-order statistics (histogram indices) derived from the gray-level histogram of the tumor region, and their relationship with SUV, MV, and TLG in 3 different tumor types. Methods: Three patient groups corresponding to 3 cancer types at baseline were studied independently: patients with metastatic colorectal cancer (72 lesions), non–small cell lung cancer (24 lesions), and breast cancer (54 lesions). Thirty-one texture indices were studied in addition to SUVs, MV, and TLG, and 5 indices extracted from histogram analysis were also investigated. The relationships between indices were studied as well as the robustness of the various texture indices with respect to the parameters involved in the calculation method (sampling schemes and tumor volume of interest). Results: Regardless of the patient group, many indices were highly correlated (Pearson correlation coefficient |r| ≥ 0.80), making it desirable to focus on only a few uncorrelated indices. Three histogram indices were highly correlated with SUVs (|r| ≥ 0.84). Four texture indices were highly correlated with MV, and none was highly correlated with SUVs (|r| ≤ 0.55). The resampling formula used to calculate texture indices had a substantial impact, and resampling using at least 32 discrete values should be used for texture indices calculation. The texture indices change as a function of the segmentation method was higher than that of peak and maximum SUVs but less than mean SUV for 5 texture indices and was larger than that of MV for 14 texture indices and for the 5 histogram indices. All these results were extremely consistent across the 3 tumor types and explained many of the observations reported in the literature so far. Conclusion: None of the histogram indices and only 17 of 31 texture indices were robust with respect to the tumor-segmentation method. An appropriate resampling formula with at least 32 gray levels should be used to avoid introducing a misleading relationship between texture indices and SUV. Some texture indices are highly correlated or strongly correlate with MV whatever the tumor type. Such correlation should be accounted for when interpreting the usefulness of texture indices for tumor characterization, which might call for systematic multivariate analyses.


PLOS ONE | 2015

18F-FDG PET-Derived Textural Indices Reflect Tissue-Specific Uptake Pattern in Non-Small Cell Lung Cancer

Fanny Orlhac; Michaël Soussan; Kader Chouahnia; Emmanuel Martinod; Irène Buvat

Purpose Texture indices (TI) calculated from 18F-FDG PET tumor images show promise for predicting response to therapy and survival. Their calculation involves a resampling of standardized uptake values (SUV) within the tumor. This resampling can be performed differently and significantly impacts the TI values. Our aim was to investigate how the resampling approach affects the ability of TI to reflect tissue-specific pattern of metabolic activity. Methods 18F-FDG PET were acquired for 48 naïve-treatment patients with non-small cell lung cancer and for a uniform phantom. We studied 7 TI, SUVmax and metabolic volume (MV) in the phantom, tumors and healthy tissue using the usual relative resampling (RR) method and an absolute resampling (AR) method. The differences in TI values between tissue types and cancer subtypes were investigated using Wilcoxon’s tests. Results Most RR-based TI were highly correlated with MV for tumors less than 60 mL (Spearman correlation coefficient r between 0.74 and 1), while this correlation was reduced for AR-based TI (r between 0.06 and 0.27 except for RLNU where r = 0.91). Most AR-based TI were significantly different between tumor and healthy tissues (pvalues <0.01 for all 7 TI) and between cancer subtypes (pvalues<0.05 for 6 TI). Healthy tissue and adenocarcinomas exhibited more homogeneous texture than tumor tissue and squamous cell carcinomas respectively. Conclusion TI computed using an AR method vary as a function of the tissue type and cancer subtype more than the TI involving the usual RR method. AR-based TI might be useful for tumor characterization.


The Journal of Nuclear Medicine | 2017

Understanding changes in tumor textural indices in PET: a comparison between visual assessment and index values in simulated and patient data.

Fanny Orlhac; Christophe Nioche; Michael Soussan; Irène Buvat

The use of texture indices to characterize tumor heterogeneity from PET images is being increasingly investigated in retrospective studies, yet the interpretation of PET-derived texture index values has not been thoroughly reported. Furthermore, the calculation of texture indices lacks a standardized methodology, making it difficult to compare published results. To allow for texture index value interpretation, we investigated the changes in value of 6 texture indices computed from simulated and real patient data. Methods: Ten sphere models mimicking different activity distribution patterns and the 18F-FDG PET images from 54 patients with breast cancer were used. For each volume of interest, 6 texture indices were measured. The values of texture indices and how they changed as a function of the activity distribution were assessed and compared with the visual assessment of tumor heterogeneity. Results: Using the sphere models and real tumors, we identified 2 sets of texture indices reflecting different types of uptake heterogeneity. Set 1 included homogeneity, entropy, short-run emphasis, and long-run emphasis, all of which were sensitive to the presence of uptake heterogeneity but did not distinguish between hyper- and hyposignal within an otherwise uniform activity distribution. Set 2 comprised high-gray-level-zone emphasis and low-gray-level-zone emphasis, which were mostly sensitive to the average uptake rather than to the uptake local heterogeneity. Four of 6 texture indices significantly differed between homogeneous and heterogeneous lesions as defined by 2 nuclear medicine physicians (P < 0.05). All texture index values were sensitive to voxel size (variations up to 85.8% for the most homogeneous sphere models) and edge effects (variations up to 29.1%). Conclusion: Unlike a previous report, our study found that variations in texture indices were intuitive in the sphere models and real tumors: the most homogeneous uptake distribution exhibited the highest homogeneity and lowest entropy. Two families of texture index reflecting different types of uptake patterns were identified. Variability in texture index values as a function of voxel size and inclusion of tumor edges was demonstrated, calling for a standardized calculation methodology. This study provides guidance for nuclear medicine physicians in interpreting texture indices in future studies and clinical practice.


The Journal of Nuclear Medicine | 2016

Multi-scale texture analysis: from 18F-FDG PET images to pathological slides

Fanny Orlhac; Benoit Thézé; Michaël Soussan; Raphaël Boisgard; Irène Buvat

Characterizing tumor heterogeneity using texture indices derived from PET images has shown promise in predicting treatment response and patient survival in some types of cancer. Yet, the relationship between PET-derived texture indices, precise tracer distribution, and biologic heterogeneity needs to be clarified. We investigated this relationship using PET images, autoradiographic images, and histologic images. Methods: Three mice bearing orthotopically implanted mammary tumors derived from transgenic MMTV-PyMT mice were scanned with 18F-FDG PET/CT. The tumors were then sliced, and the slices were imaged with autoradiography and stained with hematoxylin and eosin. Six texture indices derived from the PET images, autoradiographic images, and histologic images were compared for their ability to capture heterogeneity on different scales. Results: The PET-derived indices correlated significantly with the autoradiography-derived ones (R = 0.57–0.85), but the values differed in magnitude. The histology-derived indices correlated poorly with the autoradiography- and PET-derived ones (R = 0.06–0.54). All indices were slightly to moderately influenced by the difference in voxel size and spatial resolution in the autoradiographic images. The autoradiography-derived indices differed significantly (P < 0.05) between regions with a high density of cells and regions with a low density and between regions with different spatial arrangements of cells. Conclusion: Heterogeneity derived in vivo from PET images accurately reflects the heterogeneity of tracer uptake derived ex vivo from autoradiographic images. Various tumor-cell densities and spatial cell distributions seen on histologic images can be distinguished using texture indices derived from autoradiographic images despite the difference in voxel size and spatial resolution. Yet, tumor texture derived from PET images only coarsely reflects the spatial distribution and density of tumor cells.


Radiology | 2014

Fluorine 18 fluorodeoxyglucose PET/CT volume-based indices in locally advanced non-small cell lung cancer: prediction of residual viable tumor after induction chemotherapy.

Michael Soussan; Joanna Cyrta; Christelle Pouliquen; Kader Chouahnia; Fanny Orlhac; Emmanuel Martinod; Jean-François Morère; Irène Buvat

PURPOSE To study whether volume-based indices of fluorine 18 fluorodeoxyglucose positron emission tomographic (PET)/computed tomographic (CT) imaging is an accurate tool to predict the amount of residual viable tumor after induction chemotherapy in patients with locally advanced non-small cell lung cancer (NSCLC). MATERIALS AND METHODS This study was approved by institutional review board with waivers of informed consent. Twenty-two patients with locally advanced NSCLC underwent surgery after induction chemotherapy. All had pre- and posttreatment FDG PET/CT scans. CT largest diameter, CT volume, maximum standardized uptake value (SUVmax), mean SUV (SUVmean), metabolic tumor volume (TV), and total lesion glycolysis of primary tumor were calculated. Changes in tumor measurements were determined by dividing follow-up by baseline measurement (ratio index). Amounts of residual viable tumor, necrosis, fibrous tissue, inflammatory infiltrate, and Ki-67 proliferative index were estimated on resected tumor. Correlations between imaging indices and histologic parameters were estimated by using Spearman correlation coefficients or Mann-Whitney tests. RESULTS No baseline or posttreatment indices correlated with percentage of residual viable tumor. TV ratio was the only index that correlated with percentage of residual viable tumor (r = 0.61 [95% confidence interval: 0.24, 0.81]; P = .003). Conversely, SUVmax and SUVmean ratios were only indices correlated with Ki-67 (r = 0.62 [95% confidence interval: 0.24, 0.82]; P = .003; and r = 0.60 [95% confidence interval: 0.21, 0.81]; P = .004, respectively). Total lesion glycolysis ratio was moderately correlated with residual viable tumor (r = 0.53 [95% confidence interval: 0.13, 0.78]; P = .01) and with Ki-67 (r = 0.57 [95% confidence interval: 0.18, 0.80]; P = .006). No ratios were correlated with presence of inflammatory infiltrate or foamy macrophages. CONCLUSION TV and total lesion glycolysis ratios were the only indices correlated with residual viable tumor after induction chemotherapy in locally advanced NSCLC.


Oncotarget | 2017

Prediction of cervical cancer recurrence using textural features extracted from 18 F-FDG PET images acquired with different scanners

Sylvain Reuzé; Fanny Orlhac; Cyrus Chargari; Christophe Nioche; Elaine Johanna Limkin; François Riet; Alexandre Escande; Christine Haie-Meder; Laurent Dercle; Sebastien Gouy; Irène Buvat; Eric Deutsch; Charlotte Robert

Objectives To identify an imaging signature predicting local recurrence for locally advanced cervical cancer (LACC) treated by chemoradiation and brachytherapy from baseline 18F-FDG PET images, and to evaluate the possibility of gathering images from two different PET scanners in a radiomic study. Methods 118 patients were included retrospectively. Two groups (G1, G2) were defined according to the PET scanner used for image acquisition. Eleven radiomic features were extracted from delineated cervical tumors to evaluate: (i) the predictive value of features for local recurrence of LACC, (ii) their reproducibility as a function of the scanner within a hepatic reference volume, (iii) the impact of voxel size on feature values. Results Eight features were statistically significant predictors of local recurrence in G1 (p < 0.05). The multivariate signature trained in G2 was validated in G1 (AUC=0.76, p<0.001) and identified local recurrence more accurately than SUVmax (p=0.022). Four features were significantly different between G1 and G2 in the liver. Spatial resampling was not sufficient to explain the stratification effect. Conclusion This study showed that radiomic features could predict local recurrence of LACC better than SUVmax. Further investigation is needed before applying a model designed using data from one PET scanner to another.


The Journal of Nuclear Medicine | 2018

A post-reconstruction harmonization method for multicenter radiomic studies in PET

Fanny Orlhac; Sarah Boughdad; Cathy Philippe; Hugo Stalla-Bourdillon; Christophe Nioche; Laurence Champion; Michaël Soussan; Frédérique Frouin; Vincent Frouin; Irène Buvat

Several reports have shown that radiomic features are affected by acquisition and reconstruction parameters, thus hampering multicenter studies. We propose a method that, by removing the center effect while preserving patient-specific effects, standardizes features measured from PET images obtained using different imaging protocols. Methods: Pretreatment 18F-FDG PET images of patients with breast cancer were included. In one nuclear medicine department (department A), 63 patients were scanned on a time-of-flight PET/CT scanner, and 16 lesions were triple-negative (TN). In another nuclear medicine department (department B), 74 patients underwent PET/CT on a different brand of scanner and a different reconstruction protocol, and 15 lesions were TN. The images from department A were smoothed using a gaussian filter to mimic data from a third department (department A-S). The primary lesion was segmented to obtain a lesion volume of interest (VOI), and a spheric VOI was set in healthy liver tissue. Three SUVs and 6 textural features were computed in all VOIs. A harmonization method initially described for genomic data was used to estimate the department effect based on the observed feature values. Feature distributions in each department were compared before and after harmonization. Results: In healthy liver tissue, the distributions significantly differed for 4 of 9 features between departments A and B and for 6 of 9 between departments A and A-S (P < 0.05, Wilcoxon test). After harmonization, none of the 9 feature distributions significantly differed between 2 departments (P > 0.1). The same trend was observed in lesions, with a realignment of feature distributions between the departments after harmonization. Identification of TN lesions was largely enhanced after harmonization when the cutoffs were determined on data from one department and applied to data from the other department. Conclusion: The proposed harmonization method is efficient at removing the multicenter effect for textural features and SUVs. The method is easy to use, retains biologic variations not related to a center effect, and does not require any feature recalculation. Such harmonization allows for multicenter studies and for external validation of radiomic models or cutoffs and should facilitate the use of radiomic models in clinical practice.


Physics in Medicine and Biology | 2018

Computation of reliable textural indices from multimodal brain MRI: suggestions based on a study of patients with diffuse intrinsic pontine glioma

Jessica Goya-Outi; Fanny Orlhac; Raphael Calmon; Agusti Alentorn; Christophe Nioche; Cathy Philippe; Stéphanie Puget; Nathalie Boddaert; Irène Buvat; Jacques Grill; Vincent Frouin; Frédérique Frouin

Few methodological studies regarding widely used textural indices robustness in MRI have been reported. In this context, this study aims to propose some rules to compute reliable textural indices from multimodal 3D brain MRI. Diagnosis and post-biopsy MR scans including T1, post-contrast T1, T2 and FLAIR images from thirty children with diffuse intrinsic pontine glioma (DIPG) were considered. The hybrid white stripe method was adapted to standardize MR intensities. Sixty textural indices were then computed for each modality in different regions of interest (ROI), including tumor and white matter (WM). Three types of intensity binning were compared [Formula: see text]: constant bin width and relative bounds; [Formula: see text] constant number of bins and relative bounds; [Formula: see text] constant number of bins and absolute bounds. The impact of the volume of the region was also tested within the WM. First, the mean Hellinger distance between patient-based intensity distributions decreased by a factor greater than 10 in WM and greater than 2.5 in gray matter after standardization. Regarding the binning strategy, the ranking of patients was highly correlated for 188/240 features when comparing [Formula: see text] with [Formula: see text], but for only 20 when comparing [Formula: see text] with [Formula: see text], and nine when comparing [Formula: see text] with [Formula: see text]. Furthermore, when using [Formula: see text] or [Formula: see text] texture indices reflected tumor heterogeneity as assessed visually by experts. Last, 41 features presented statistically significant differences between contralateral WM regions when ROI size slightly varies across patients, and none when using ROI of the same size. For regions with similar size, 224 features were significantly different between WM and tumor. Valuable information from texture indices can be biased by methodological choices. Recommendations are to standardize intensities in MR brain volumes, to use intensity binning with constant bin width, and to define regions with the same volumes to get reliable textural indices.


Cancer Research | 2018

LIFEx: A Freeware for Radiomic Feature Calculation in Multimodality Imaging to Accelerate Advances in the Characterization of Tumor Heterogeneity

Christophe Nioche; Fanny Orlhac; Sarah Boughdad; Sylvain Reuzé; Jessica Goya-Outi; Charlotte Robert; Claire Pellot-Barakat; Michaël Soussan; Frédérique Frouin; Irène Buvat

Textural and shape analysis is gaining considerable interest in medical imaging, particularly to identify parameters characterizing tumor heterogeneity and to feed radiomic models. Here, we present a free, multiplatform, and easy-to-use freeware called LIFEx, which enables the calculation of conventional, histogram-based, textural, and shape features from PET, SPECT, MR, CT, and US images, or from any combination of imaging modalities. The application does not require any programming skills and was developed for medical imaging professionals. The goal is that independent and multicenter evidence of the usefulness and limitations of radiomic features for characterization of tumor heterogeneity and subsequent patient management can be gathered. Many options are offered for interactive textural index calculation and for increasing the reproducibility among centers. The software already benefits from a large user community (more than 800 registered users), and interactions within that community are part of the development strategy.Significance: This study presents a user-friendly, multi-platform freeware to extract radiomic features from PET, SPECT, MR, CT, and US images, or any combination of imaging modalities. Cancer Res; 78(16); 4786-9. ©2018 AACR.


Oncotarget | 2018

Influence of age on radiomic features in 18 F-FDG PET in normal breast tissue and in breast cancer tumors

Sarah Boughdad; Christophe Nioche; Fanny Orlhac; Laurine Jehl; Laurence Champion; Irène Buvat

Background To help interpret measurements in breast tissue and breast tumors from 18F-FDG PET scans, we studied the influence of age in measurements of PET parameters in normal breast tissue and in a breast cancer (BC) population. Results 522 women were included: 331 pts without history of BC (B-VOI) and 191 patients with BC (T-VOI). In B-VOI, there were significant differences between all age groups for Standardized Uptake Values (SUVs) and for 12 textural indices (TI) whereas histogram-based indices (HBI) did not vary between age groups. SUV values decreased over time whereas Homogeneity increased. We had a total of 210 T-VOI and no significant differences were found according to the histological type between 190 ductal carcinoma and 18 lobular carcinoma. Conversely, according to BC subtype most differences in PET parameters between age groups were found in Triple-Negative tumors (52) for 9 TI. On post-hoc Hochberg, most differences were found between the <45 year old (PRE) group and POST groups in NBT and in Triple-Negative tumors. Conclusion We found significant SUVs and TI differences as a function of age in normal breast tissue and in BC radiomic phenotype with Triple-Negative tumors being the most affected. Our findings suggest that age should be taken into account as a co-covariable in radiomic models. Methods Patients were classified in 3 age groups: <45 yo (PRE), ≥45 and <55 yo (PERI) and ≥55 and <85 yo (POST) and we compared PET parameters using Anova test with post-hoc Bonferroni/Hochberg analyses: SUV (max, mean and peak), HBI and TI in both breasts and in breast tumor regions.

Collaboration


Dive into the Fanny Orlhac's collaboration.

Top Co-Authors

Avatar

Irène Buvat

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar

Christophe Nioche

French Alternative Energies and Atomic Energy Commission

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sylvain Reuzé

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge