Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fanrong Pu is active.

Publication


Featured researches published by Fanrong Pu.


Biomaterials | 2002

Effects of plasma treated PET and PTFE on expression of adhesion molecules by human endothelial cells in vitro

Fanrong Pu; Rachel Williams; T.K Markkula; John A. Hunt

The aim of this study was to evaluate the expression of adhesion molecules on the surface of human endothelial cells in response to the systematic variation in materials properties by the ammonia plasma modification of polyethylene terephthalate (PET) and polytetrafluorethylene (PTFE). These adhesion molecules act as mediators of cell adhesion, play a role in the modulation of cell adhesion on biomaterials and therefore condition the response of tissues to implants. First and second passage human umbilical vein endothelial cells (HUVECs) were cultured on plasma treated and untreated PET and PTFE. HUVECs grown on polystyrene tissue culture coverslips and HUVECs stimulated with tumour necrosis factor (TNF-alpha) were used as controls. After 1 day and 7 days, the expression of adhesion molecules platelet endothelial cell adhesion molecule-1 (PECAM-1), intercellular adhesion molecule-1 (ICAM-1), Integrin alphavbeta3, vascular cell adhesion molecule-1 (VCAM-1), E-selectin, P-selectin and L-selectin were evaluated using flow cytometry and immunohistochemistry. There was a slight increase in positive cell numbers expressing the adhesion molecules ICAM-1 and VCAM-1 on plasma treated PET and PTFE. A significant increase in E-selectin positive cells on untreated PTFE was demonstrated after 7 days. Stimulation with TNF-alpha demonstrated a significant increase in the proportion of ICAM-1. VCAM-1 and E-selectin positive cells. Almost all cells expressed PECAM-1 and integrin alphavbeta3, on both materials and controls but did not express P- and L-selectin on any surface. When second passage cells were used, the expression of the adhesion molecules ICAM-1 and VCAM-1 was markedly increased on all surfaces but not with TNF-alpha. These significant differences were not observed in other adhesion molecules. These results were supported by immunohistochemical studies. The effects of plasma treated PET and PTFE on cell adhesion and proliferation was also studied. There was a 1.3-fold increase in cell numbers adhered on ammonia plasma treated PET compared to untreated PET and a 5.5-fold increase in cell numbers on treated PTFE compared to untreated PTFE after 1 day. This is significantly different when analysed statistically. After 7 days, cell number increased significantly on all surfaces compared to 1 day, except for untreated PTFE which conversely reduced by 41%. Cell number on the surface of untreated PET was no different to treated PET on days 1 and 7 when second passage cells were used. The study has shown that the plasma treatment of PET and PTFE with ammonia improves the adhesion and growth of endothelial cells and slightly upregulates the expression of adhesion molecules. This surface modification should promote colonisation of an artificial vascular prosthesis by endothelial cells and make it less vulnerable to immune system cells of the recipient. In addition, it should be considered which passage of cells is used due to the different adhesion features of different passages of HUVECs on untreated PET.


Biomaterials | 2002

Expression of leukocyte-endothelial cell adhesion molecules on monocyte adhesion to human endothelial cells on plasma treated PET and PTFE in vitro.

Fanrong Pu; Rachel Williams; T.K Markkula; John A. Hunt

We used a coculture model to evaluate the inflammatory potential of ammonia gas plasma modified PET and PTFE by flow cytometry and immunohistochemistry. In these studies, human endothelial cells from umbilical cord (HUVEC) and promonocytic U937 cells were used. HUVECs grown on polystyrene tissue culture coverslips and HUVECs stimulated with tumour necrosis factor (TNF-alpha) were used as controls. U937 adhesion to endothelium on each surface was evaluated at day 1 and day 7. To further investigate the role of leukocyte-endothelial cell adhesion molecules (CAMs) in cell-to-cell interaction on material surfaces, the expression of the leukocyte-endothelial CAMs: ICAM-1, VCAM-1, PECAM-1, and E-selectin on HUVECs were evaluated after U937 cell adhesion. The results demonstrated that plasma treated PET (T-PET) and treated PTFE (T-PTFE) did not increase U937 cell adhesion compared to the negative control. Maximal adhesion of U937 cells to HUVEC was observed on TNF-alpha stimulated endothelium with significant differences between day 1 and day 7, which is consistent with our prior observation that T-PET and T-PTFE did not cause HUVECs to increase the expression of adhesion molecules. After U937 cell adhesion, the expression of ICAM-1 and VCAM-1 of HUVECs were not different on T-PET and T-PTFE compared with the negative control. However, the expression of E-selectin was reduced on day 1, but not on day 7. The effects of plasma treated PET and PTFE on HUVEC adhesion and proliferation were also studied. On day 1 there were slight increases in the growth of HUVECs on both of T-PET and T-PTFE but this was not statistically significant. On day 7, the cell number increased significantly on the surfaces compared to the negative control. The results demonstrate that the plasma treatment of PET and PTFE with ammonia improves the adhesion and growth of endothelial cells and these surfaces do not exhibit a direct inflammatory effect in terms of monocyte adhesion and expression of leukocyte-endothelial CAMs. The monocyte adhesion to endothelial cells on surfaces can be used as a tool for the evaluation of material surface modification and further to study the mechanisms of cell-to-cell interactions in response to surfaces.


Biomaterials | 2010

The use of flow perfusion culture and subcutaneous implantation with fibroblast-seeded PLLA-collagen 3D scaffolds for abdominal wall repair

Fanrong Pu; Nick Rhodes; Yves Bayon; Rui Chen; Gerben Brans; Remco Benne; John A. Hunt

Highly cellularised 3D-tissue constructs designed to repair large, complex abdominal wall defects were prepared using poly (lactic acid) (PLLA)-collagen scaffolds in vitro using a flow perfusion bioreactor. The PLLA-collagen scaffolds had a unique structure consisting of a collagen sponge formed within the pores of a mechanically stable knitted mesh of PLLA. The effect of the flow perfusion bioreactor culturing conditions was investigated in vitro for 0, 7, 14 and 28 days on scaffolds seeded with dermal fibroblasts. The cultured constructs were subsequently studied subcutaneously (SC) in an in vivo animal model. The results of in vitro studies demonstrated that the perfusion system facilitated increased cell proliferation and homogenous distribution in the PLLA-collagen scaffolds compared to static conditions. A highly cellularised 3D-tissue construct was formed by 7 days incubation under perfusion conditions, with increased cellularity by the 28 day time point. The in vivo model demonstrated that implanting constructs with high cellularity resulted in exceptional cell stabilisation, with the survival of implanted cells and expression of the phenotypically-relevant extracellular matrix proteins collagen types I and III, studied by fluorescence in situ hybridisation (FISH) and immunohistochemistry. The implantation of this porous PPLA-collagen scaffold seeded with dermal fibroblasts following in vitro maturation using a flow perfusion bioreactor system suggests a significant advance over current state-of-the-art procedures for the reconstruction of large, complex abdominal wall tissue defects.


Biomaterials | 2011

The use of dynamic surface chemistries to control msc isolation and function

Judith M. Curran; Fanrong Pu; Rui Chen; John A. Hunt

Material modifications can be used to induce cell responses, in particular-CH(3) and -NH(2) have shown potential in enhancing the ability of a material to support mesenchymal stem cell (MSC) adhesion and differentiation. Currently this process is variable, due to the lack of definition of controlled contextual presentation of the chemical group of interest across the surface. This paper defines the potential of -CH(3) modified surfaces, with optimised dynamic surface chemistry, to manipulate initial MSC adhesive events, integrin binding, and subsequent cell function. An array of -CH(3) silane modified glass substrates was produced using different -CH(3) chain lengths and mechanisms of bonding to the base substrate. We show that changing the chain length affects the ability of the surfaces to support viable adult MSC adhesion, directly related to induced FGF release, and expression of STRO-1, CD29, 73, 90 and 105. Chlorodimethyloctylsilane (ODMCS) modified surfaces resulted in significant increases of associated adult MSC markers compared to all other -CH(3) modified and control substrates. In contrast Dichlorodimethylsilane (DMDCS) modified surfaces did not support adult MSC adhesion due to high levels of early FGF release, which had an inhibitory effect on adult MSC culture, but enhanced the efficiency and cell selective properties of the substrate in isolation of multi-potent progenitor/MSC from adult human whole blood. Incorporation of optimised -CH(3) groups is a cost effective route for producing substrates that significantly enhance MSC isolation and expansion, highlighting the potential of the optimised substrates to replace RGD and fibronectin modifications in selected applications.


Journal of Biomedical Materials Research Part A | 2013

Cytokine secretion from human peripheral blood mononuclear cells cultured in vitro with metal particles

Sandra C. P. Cachinho; Fanrong Pu; John A. Hunt

The failure of implanted medical devices can be associated with changes in the production of cytokines by cells of the immune system. Cytokines released by peripheral blood mononuclear cells upon contact with metal particles were quantified to understand their role in implantation intergration and their importance as messengers in the recruitment of T-lymphocytes at the implantation site. Opsonization was utilised to understand the influence of serum proteins on particle-induced cytokine production and release. Different metal compositions were used in the particulate format, Titanium (Ti), Titanium alloy (Ti6Al4V), and Stainless Steel 316L (SS), and were cultured in vitro with a mixed population of monocytes/macrophages and lymphocytes. The cells were also exposed to an exogenous stimulant mixture of phytohemagglutinin-P and interferon-gamma (IFN-γ) and opsonized particles with human serum. Interleukins, IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, IFN-γ, and tumor necrosis factor-alpha (TNF-α) were investigated using enzyme-linked immunosorbent assay as they are an indicator of the inflammation evoked by particulate metals. It has been experimentally evidenced that metal particles induced higher amounts of IL-6 and IL-1 but very low amounts of TNF-α. T-lymphocyte activation was evaluated by the quantification of IL-2 and IFN-γ levels. The results showed that nonopsonized and opsonized metal particles did not induce the release of increased levels of IL-2 and IFN-γ.


Journal of Materials Science: Materials in Medicine | 2015

Human mesenchymal stem cell response to poly(ε-caprolactone/poly(methyl methacrylate) demixed thin films

Mohammed Khattak; Fanrong Pu; Judith M. Curran; John A. Hunt; Raechelle A. D’Sa

Advances in material sciences have enabled the fabrication of biomaterials which are able to provide the requisite cues to stimulate cells to behave in a specific way. Nanoscale surface topographies are well known to be able to positively influence cell–substrate interactions. This study reports on a novel series of poly(ε-caprolactone) PCL and poly(methyl methacrylate) demixed nanotopographic films as non-biological cell-stimulating cues. The topographic features observed ranged from nanoislands to nanopits. PMMA was observed to segregate to the air interface, while PCL preferred the substrate interface. Preliminary response of human mesenchymal stem cells to these surfaces indicated that the substrate with nanoisland topography has the potential to differentiate to osteogenic, chondrogenic and adipogenic lineages.


Experimental Lung Research | 2001

Differential regulation of calcitonin secretion in normal and neoplastic pulmonary neuroendocrine cells in vitro

Fanrong Pu; Francis C.R. Manning; Angela E. Brannigan; S. R. Crosby

Within the mammalian lung, cells with a neuroendocrine phenotype are few in number and are sparsely distributed. In contrast, neuroendocrine neoplasms represent a major group of lung cancers. The aim of this study was to develop a model of mammalian PNECs and to compare glucocorticoid regulation of calcitonin secretion in normal and neoplastic cells with neuroendocrine differentiation. Cell cultures of PNECs were initiated after the disaggregation of neonatal hamster lungs with 0.1% collagenase and fractionation of the resultant cell suspension on a gradient of iodixanol (1.320 g/mL). Cell fractions enriched in PNECs were identified by positive staining for 5-hydroxytryptamine and the presence of calcitonin. Calcitonin secretion was investigated after exposure to hydrocortisone (0 to 1000 nM). A dose-dependant inhibition of calcitonin secretion was seen after 7 days between 10 nM (55% of control), and 1000 nM (29%) hydrocortisone. Cell cultures grown in the presence of hydrocortisone also contained significantly fewer PNECs between 10 nM (90% of control), and 1000 nM (45%). Human bronchial carcinoid cells (NCIH727) cultured under identical conditions showed a similar inhibition of calcitonin secretion between 10 nM (53%) and 1000 nM (52%), although at these concentrations, no reduction in cell number was seen. In contrast, 2 human small cell lung cancer cell lines (DMS-79 and COR-L24 cells) showed no dose-dependent inhibition of calcitonin secretion and no effect on cell proliferation in response to hydrocortisone. These results show that enriched cultures of mammalian PNECs can be used to investigate functional aspects of their biology, including peptide secretion in response to potential regulators. Furthermore, calcitonin secretion is inhibited in normal PNECs and bronchial carcinoid cells at physiological concentrations of glucocorticoids, but this feature appears not to be present in the 2 more invasive neuroendocrine neoplasms (small cell lung cancer cells) investigated in this study.Within the mammalian lung, cells with a neuroendocrine phenotype are few in number and are sparsely distributed. In contrast, neuroendocrine neoplasms represent a major group of lung cancers. The aim of this study was to develop a model of mammalian PNECs and to compare glucocorticoid regulation of calcitonin secretion in normal and neoplastic cells with neuroendocrine differentiation. Cell cultures of PNECs were initiated after the disaggregation of neonatal hamster lungs with 0.1% collagenase and fractionation of the resultant cell suspension on a gradient of iodixanol (1.320 g/mL). Cell fractions enriched in PNECs were identified by positive staining for 5-hydroxytryptamine and the presence of calcitonin. Calcitonin secretion was investigated after exposure to hydrocortisone (0 to 1,000 nM). A dose-dependant inhibition of calcitonin secretion was seen after 7 days between 10 nM (55% of control), and 1,000 nM (29%) hydrocortisone. Cell cultures grown in the presence of hydrocortisone also contained significantly fewer PNECs between 10 nM (90% of control), and 1,000 nM (45%). Human bronchial carcinoid cells (NCIH727) cultured under identical conditions showed a similar inhibition of calcitonin secretion between 10 nM (53%) and 1,000 nM (52%), although at these concentrations, no reduction in cell number was seen. In contrast, 2 human small cell lung cancer cell lines (DMS-79 and COR-L24 cells) showed no dose-dependent inhibition of calcitonin secretion and no effect on cell proliferation in response to hydrocortisone. These results show that enriched cultures of mammalian PNECs can be used to investigate functional aspects of their biology, including peptide secretion in response to potential regulators. Furthermore, calcitonin secretion is inhibited in normal PNECs and bronchial carcinoid cells at physiological concentrations of glucocorticoids, but this feature appears not to be present in the 2 more invasive neuroendocrine neoplasms (small cell lung cancer cells) investigated in this study.


Experimental Cell Research | 2012

The significance of the host inflammatory response on the therapeutic efficacy of cell therapies utilising human adult stem cells

Melba Navarro; Fanrong Pu; John A. Hunt

Controlling the fate of implanted hMSCs is one of the major drawbacks to be overcome to realize tissue engineering strategies. In particular, the effect of the inflammatory environment on hMSCs behaviour is poorly understood. Studying and mimicking the inflammatory process in vitro is a very complex and challenging task that involves multiple variables. This research addressed the questions using in vitro co-cultures of primary derived hMSCs together with human peripheral blood mononucleated cells (PBMCs); the latter are key agents in the inflammatory process. This work explored the in vitro phenotypic changes of hMSCs in co-culture direct contact with monocytes and lymphocytes isolated from blood using both basal and osteogenic medium. Our findings indicated that hMSCs maintained their undifferentiated phenotype and pluripotency despite the contact with PBMCs. Moreover, hMSCs demonstrated increased proliferation and were able to differentiate specifically down the osteogenic lineage pathway. Providing significant crucial evidence to support the hypothesis that inflammation and host defence mechanisms could be utilised rather than avoided and combated to provide for the successful therapeutic application of stem cell therapies.


Journal of Materials Science: Materials in Medicine | 2001

Monocyte adhesion and adhesion molecule expression on human endothelial cells on plasma-treated PET and PTFE in vitro

Fanrong Pu; Rachel Williams; T.K Markkula; John A. Hunt

The aim of this study was to evaluate in vitro the inflammatory potential of endothelialized surfaces of polyethylene terephthalate (PET) and polytetrafluorethylene (PTFE) after ammonia gas plasma modification. HUVECs grown on polystyrene and HUVECs stimulated with tumor necrosis factor (TNF-α) were used as controls. At day 1 and day 7, surfaces were evaluated for U937 cells and HUVECs using flow cytometry and immunohistochemistry. Plasma-treated PET (T-PET) and treated PTFE (T-PTFE) increased U937 cell adhesion compared to the negative control but this was not statistically significant. Maximal adhesion of U937 cells to HUVEC was observed on TNF-α stimulated endothelium with significant differences between day 1 and day 7. There was a small increase in U937 cell adhesion to plasma-treated PET compared to PTFE on both day 1 and day 7, but this was not statistically significant. Immunohistochemical staining demonstrated two patterns of distribution for monocyte adhesion on materials. On T-PET the cells were positioned in clusters attached to HUVECs and on T-PTFE the cells were randomly distributed on HUVECs and material. The effects of plasma-treated PET and PTFE on HUVEC adhesion and proliferation were also studied. On day 1 there were slight increases in the growth of HUVECs on both of T-PET and T-PTFE but this was not statistically significant. On day 7, cell number increased significantly on all of surfaces compared to the negative control. The results demonstrate that the plasma treatment of PET and PTFE with ammonia improves the adhesion and growth of endothelial cells and these surfaces do not exhibit a direct inflammatory effect in terms of monocyte adhesion. Plasma-treated PTFE enhances HUVECs growth and was less adhesive for monocytes as compared with treated PET. The monocyte adhesion to endothelial cells on surfaces can be used as a tool for the evaluation of material surface modification and further to study the mechanisms of cell to cell interactions in response to surfaces.© 2001 Kluwer Academic Publishers


Journal of Tissue Engineering and Regenerative Medicine | 2016

In vitro cellular response to oxidized collagen-PLLA hybrid scaffolds designed for the repair of muscular tissue defects and complex incisional hernias

Fanrong Pu; Nick Rhodes; Yves Bayon; John A. Hunt

Unique poly(l‐lactic acid) (PLLA)‐based scaffolds were constructed by embedding knitted PLLA yarns within a bioresorbable and differentially crosslinked three‐dimensional (3D) oxidized collagen scaffold. The scaffolds were designed specifically for the repair of complex incisional abdominal wall hernias and the repair of defects within planar muscular tissues, such as the bladder. The chemical composition of the collagen matrix and the percentage of scaffold infiltration were compared for the different scaffold compositions. The results demonstrate that the incorporation of the collagen sponge within the PLLA scaffold facilitated bladder smooth muscle cell (bSMC) adhesion and proliferation. The highest dose of oxidized collagen (Oxicol) demonstrated better cell adhesion, resulting in the largest cell densities and most uniform distribution throughout the 3D collagen sponge. This formulation promoted the greatest α‐smooth muscle actin (αSMA) expression detected through immunohistochemical staining and western blotting. For abdominal wall repair applications, the proliferation and differentiation of C2C12 myoblasts and myotube formation were studied. Following 7 days of myogenic induction, the greatest expression of mRNA of the myogenic markers myogenin and MRF4 was observed within the scaffolds with the highest dose of oxidized collagen, 1.5‐ and 3.85‐fold greater expressions, respectively, compared to PLLA with unmodified collagen. Furthermore, in vitro myotube formation and MyMC expression were enhanced in the Oxicol scaffolds. We conclude that the Oxicol scaffold formulation with a high‐dose oxidized collagen ratio provides enhanced myogenesis and αSMA, and the biological induction cues necessary to achieve better tissue integration, than standard PLLA scaffolds in the treatment of complex abdominal wall hernias. Copyright

Collaboration


Dive into the Fanrong Pu's collaboration.

Top Co-Authors

Avatar

John A. Hunt

University of Liverpool

View shared research outputs
Top Co-Authors

Avatar

Nick Rhodes

University of Liverpool

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rui Chen

University of Liverpool

View shared research outputs
Top Co-Authors

Avatar

T.K Markkula

University of Liverpool

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francis C.R. Manning

Liverpool John Moores University

View shared research outputs
Top Co-Authors

Avatar

Jude Curran

University of Liverpool

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge