Fanrong Yao
North Dakota State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fanrong Yao.
Circulation Research | 2009
Qi Zhang; Fanrong Yao; Mohan K. Raizada; Stephen T. O'Rourke; Chengwen Sun
The peripheral apelin system plays a significant role in cardiovascular homeostasis and in the pathophysiology of cardiovascular diseases. However, the central effect of this neurohormonal system in neural control of cardiovascular function remains poorly understood. Thus, this study was undertaken to evaluate the effect of apelin in the rostral ventrolateral medulla (RVLM) on blood pressure, cardiac function, and sympathetic nerve activity. Apelin mRNA and protein levels were detected with real-time RT-PCR and Western blots, respectively. Expression of apelin was significantly enhanced in the RVLM of spontaneously hypertensive rat (SHR) compared with normotensive Wistar–Kyoto (WKY) rats. To study the functional consequence of upregulated apelin expression, apelin was overexpressed by bilateral microinjection of the AAV2-apelin viral vector into the RVLM of WKY rats. Immunofluorescence staining and Western blots demonstrated that microinjection of AAV2-apelin into the RVLM resulted in a significant increase in apelin expression, which was associated with a chronic elevation in blood pressure and cardiac hypertrophy. In addition, direct microinjection of exogenous apelin-13 (200 pmol in 50 nL) into the RVLM caused a 20 mm Hg elevation in blood pressure and a 24% increase in sympathetic nerve activity. The present study is the first to show that apelin expression is enhanced in the RVLM of SHR versus WKY rats and that overexpression of this gene in the RVLM results in chronic blood pressure elevation and cardiac hypertrophy in normotensive rats. Thus, the apelin system in the RVLM may play a very important role in central blood pressure regulation and in the pathogenesis of hypertension.
Journal of Pharmacology and Experimental Therapeutics | 2008
Qinghua Zeng; Qingwei Zhou; Fanrong Yao; Stephen T. O'Rourke; Chengwen Sun
It has been shown that reactive oxygen species (ROS) are involved in the intracellular signaling response to G-protein coupled receptor stimuli in vascular smooth muscle cells and in neurons. In the present study, we tested the hypothesis that NAD(P)H oxidase-derived ROS are involved endothelin-1 (ET-1)-induced L-type calcium channel activation in isolated cardiac myocytes. ET-1 (10 nM) induced a 2-fold increase in L-type calcium channel open-state probability (NPo). This effect of ET-1 was abolished by the ETA receptor antagonist cyclo(D-Trp-D-Asp-Pro-D-Val-Leu) [BQ-123 (1 μM)] but was not altered in the presence of an ETB receptor antagonist N-cis-2,6-dimethylpiperidinocarbonyl-b-tBu-Ala-D-Trp(1-methoxycarbonyl)-D-Nle-OH [BQ-788 (1 μM)]. Pretreatment of cells with the ROS scavenger tempol (100 μM), polyethylene glycol-superoxide dismutase (SOD, 25 U/ml), or the NAD(P)H-oxidase inhibitor gp91ds-tat ([H]RKKRRQRRR-CSTRIRRQL[NH3]) (5 μM) significantly attenuated ET-1-induced increases in calcium channel NPo. Tempol, SOD, and gp91ds-tat alone had no effect on basal calcium channel activity. In addition, ET-1 significantly increased NAD(P)H oxidase activity and elevated intracellular superoxide levels in cultured cardiac myocytes. The superoxide generator, xanthine-xanthine oxidase (10 mM, 20 mU/ml), also increased calcium channel NPo in cardiac myocytes, mimicking the effect of ET-1. These observations provide the first evidence that ET-1 induces the activation of L-type Ca2+ channels via stimulation of NAD(P)H-derived superoxide production in cardiac myocytes.
American Journal of Physiology-heart and Circulatory Physiology | 2010
Qinghua Zeng; Yong Han; Yuyan Bao; Wei Li; XingTing Li; Xin Shen; Xu Wang; Fanrong Yao; Stephen T. O'Rourke; Chengwen Sun
The production of 20-hydroxyeicosatetraenoic acid (20-HETE) is increased during ischemia-reperfusion, and inhibition of 20-HETE production has been shown to reduce infarct size caused by ischemia. This study was aimed to discover the molecular mechanism underlying the action of 20-HETE in cardiac myocytes. The effect of 20-HETE on L-type Ca(2+) currents (I(Ca,L)) was examined in rat isolated cardiomyocytes by patch-clamp recording in the whole cell mode. Superfusion of cardiomyocytes with 20-HETE (10-100 nM) resulted in a concentration-dependent increase in I(Ca,L), and this action of 20-HETE was attenuated by a specific NADPH oxidase inhibitor, gp91ds-tat (5 μM), or a superoxide scavenger, polyethylene glycol-superoxide dismutase (25 U/ml), suggesting that NADPH-oxidase-derived superoxide is involved in the stimulatory action of 20-HETE on I(Ca,L). Treatment of cardiomyocytes with 20-HETE (100 nM) increased both NADPH oxidase activity and superoxide production by approximately twofold. To study the molecular mechanism mediating the 20-HETE-induced increase in NADPH oxidase activity, PKC activity was measured in cardiomyocytes. Incubation of the cells with 20-HETE (100 nM) significantly increased PKC activity, and pretreatment of cardiomyocytes with a selective PKC inhibitor, GF-109203 (1 μM), attenuated the 20-HETE-induced increases in I(Ca,L) and in NADPH oxidase activity. In summary, 20-HETE stimulates NADPH oxidase-derived superoxide production, which activates L-type Ca(2+) channels via a PKC-dependent mechanism in cardiomyocytes. 20-HETE and 20-HETE-producing enzymes could be novel targets for the treatment of cardiac ischemic diseases.
American Journal of Physiology-heart and Circulatory Physiology | 2008
Fanrong Yao; Colin Sumners; Stephen T. O'Rourke; Chengwen Sun
Increasing evidence indicates that both the angiotensin II (ANG II) and gamma-aminobutyric acid (GABA) systems play a very important role in the regulation of blood pressure (BP). However, there is little information concerning the interactions between these two systems in the nucleus tractus solitarii (NTS). In the present study, we examined the effects of ANG II on GABAA and GABAB receptor (GAR and GBR) expression in the NTS of Sprague-Dawley rats. The direct effect of ANG II on GBR expression was determined in neurons cultured from NTS. Treatment of neuronal cultures with ANG II (100 nM, 5 h) induced a twofold increase in GBR1 expression, as detected with real-time RT-PCR and Western blots, but had no effect on GBR2 or GAR expression. In electrophysiological experiments, perfusion of neuronal cultures with the GBR agonist baclofen decreased neuronal firing rate by 39% and 63% in neurons treated with either PBS (control) or ANG II, respectively, indicating that chronic ANG II treatment significantly enhanced the neuronal response to GBR activation. In contrast, ANG II had no significant effect on the inhibitory action of the GAR agonist muscimol. In whole animal studies, intracerebroventricular infusion of ANG II induced a sustained increase in mean BP and an elevation of GBR1 mRNA and protein levels in the NTS. These results indicate that ANG II stimulates GBR expression in NTS neurons, and this could contribute to the central nervous system actions of ANG II that result in dampening of baroreflexes and elevated BP in the central actions of ANG II.
Journal of Pharmacology and Experimental Therapeutics | 2011
Fanrong Yao; Amit Modgil; Qi Zhang; Ajeeth Pingili; Neha Singh; Stephen T. O'Rourke; Chengwen Sun
Microinjection of apelin-13 into the rostral ventrolateral medulla (RVLM) in the brainstem increases blood pressure in rats. In the present study, we tested the hypotheses that apelin-13 directly stimulates neuronal activity in neurons cultured from the brainstem and that NAD(P)H oxidase-derived reactive oxygen species are involved in this action of apelin-13. Microinjection of apelin-13 into the RVLM resulted in increases in arterial pressure and in renal sympathetic nerve activity in Sprague-Dawley rats. The pressor effect of apelin-13 was attenuated by the specific NAD(P)H-oxidase inhibitor gp91ds-tat. In neurons cultured from the ventral brainstem, spontaneous action potentials were recorded using current-clamp recording. Superfusion of neurons with apelin-13 (100 nM) increased the neuronal firing rate from 0.79 ± 0.14 to 1.45 ± 0.26 Hz (n = 7, P < 0.01) in angiotensin II receptor-like 1-positive neurons, identified with single-cell reverse transcriptase-polymerase chain reaction. Neither the angiotensin II type 1 receptor antagonist losartan nor the angiotensin II type 2 receptor antagonist 1-[[4-(dimethylamino)-3-methylphenyl[methyl]-5-(diphenylacetyl)-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid ditrifluoroacetate (PD123319) altered the positive chronotropic effect of apelin-13. Pretreatment of cells with either the reactive oxygen species scavenger superoxide dismutase [polyethylene glycol-superoxide dismutase (PEG-SOD), 25 U/ml] or with gp91ds-tat significantly attenuated the chronotropic action of apelin-13. PEG-SOD and gp91ds-tat alone had no effect on basal neuronal firing. In addition, apelin-13 significantly increased NAD(P)H oxidase activity and elevated intracellular superoxide levels in neuronal cultures. The superoxide generator xanthine-xanthine oxidase also increased neuronal activity in neurons, mimicking the neuronal response to apelin-13. These observations provide the first evidence that apelin-13 directly increases neuronal activity via stimulation of NAD(P)H oxidase-derived superoxide, a cellular signaling mechanism that may be involved in the pressor effect of apelin-13 in the RVLM.
American Journal of Physiology-heart and Circulatory Physiology | 2009
Qi Zhang; Fanrong Yao; Stephen T. O'Rourke; Steven Y. Qian; Chengwen Sun
Angiotensin II (ANG II) increases GABA(B) receptor expression in neuronal cultures from the nucleus tractus solitarii (NTS). In the present study, the chronic effects of ANG II on GABA(B) receptor expression and activity were examined in the NTS of Sprague-Dawley rats. Intracerebroventricular infusion of ANG II caused a significant elevation in blood pressure (BP) and an increase in GABA(B) receptor expression in the NTS. Conversely, chronic N(G)-nitro-l-arginine methyl ester (l-NAME) treatment also increased BP, but had no effect on GABA(B) receptor expression in the NTS. Next, we examined the BP response to the GABA(B) receptor agonist baclofen microinjected into the NTS of ANG II- or artificial cerebrospinal fluid (aCSF)-infused rats. NTS microinjection of baclofen increased BP in both groups of rats. However, the pressor response to baclofen was enhanced in ANG II-infused rats compared with aCSF-infused rats. In addition, bilateral microinjection of the GABA(B) receptor antagonist CGP-35348 into the NTS evoked a decrease in BP in both group of rats, and the depressor responses to CGP-35348 were enhanced in the ANG II-infused rats. In contrast, the pressor responses to the GABA(A) receptor agonist muscimol and the depressor responses to the GABA(A) receptor antagonist bicuculline were comparable between aCSF- and ANG II-infused rats. These results indicate that chronic ANG II infusion stimulates GABA(B) receptor expression and augments GABA(B) receptor-mediated responses in the NTS. This effect could contribute to the central nervous system actions of ANG II that result in dampening of baroreflexes and elevation in arterial BP.
Journal of Cardiovascular Pharmacology | 2015
Huiying Zhao; Guohua Qi; Yong Han; Xin Shen; Fanrong Yao; Chengluan Xuan; Yan Gu; Steven Y. Qian; Qinghua Zeng; Stephen T. OʼRourke; Chengwen Sun
Abstract: Cardiomyocyte apoptosis is involved in a variety of cardiac stresses, including ischemia-reperfusion injury, heart failure, and cardiomyopathy. Both Angiotensin II (Ang II) and 20-hydroxyeicosatetraenoic acid (20-HETE) induce apoptosis in cardiomyocytes. Here, we examined the relationship between 20-HETE and Ang II in cardiomyocyte apoptosis. Apoptosis was examined using flow cytometry in primary cultured rat cardiomyocytes treated with control, Ang II, and Ang II plus HET0016 (a 20-HETE formation inhibitor). The results demonstrated that the treatment of cardiomyocytes with Ang II or 20-HETE significantly increased the percentage of apoptotic cells and that Ang II-induced apoptosis was markedly attenuated by HET0016 or losartan (an AT1 receptor antagonist). In apoptotic mechanism experiments, Ang II or 20-HETE treatment significantly reduced mitochondrial membrane potential, indicating that a mitochondria-dependent mechanism is involved. Ang II-induced alteration in mitochondrial membrane potential was significantly attenuated by HET0016. Treatment of cardiomyocytes with Ang II also increased superoxide production, and this effect of Ang II was attenuated by HET0016. Treatment of cardiomyocytes with Ang II significantly increased CYP4A1 expression and 20-HETE production, as measured by Western blot, real-time RT-PCR, and mass spectrometric analysis. All results suggest that 20-HETE may play a key role in Ang II-induced apoptosis in cardiomyocytes by a mitochondrial superoxide-dependent pathway.
American Journal of Physiology-heart and Circulatory Physiology | 2012
Amit Modgil; Qi Zhang; Ajeeth Pingili; Neha Singh; Fanrong Yao; Jingyan Ge; Lirong Guo; Chengluan Xuan; Stephen T. O'Rourke; Chengwen Sun
Several studies have focused on the beneficial effects of peripheral angiotensin-(1-7) [Ang-(1-7)] in the regulation of cardiovascular function, showing its counterregulatory effect against the actions of angiotensin II (ANG II). However, its actions in the central nervous system are not completely understood. In the present study, we investigated the intracellular mechanisms underlying the action of ANG-(1-7) using the patch-clamp technique in neurons cultured from the hypothalamus of neonatal spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) rats. Superfusion of neurons with ANG II (100 nM) significantly increased neuronal firing in both strains of rats, and this chronotropic effect of ANG II was significantly enhanced in prehypertensive SHR neurons compared with WKY rat neurons. The enhanced chronotropic effect of ANG II was attenuated by a phosphatidylinositol 3-kinase (PI3-kinase) inhibitor, LY 294002 (10 μM). Superfusion of neurons with ANG-(1-7) (100 nM) did not alter the neuronal firing rate in either SHR or WKY neurons; however, it significantly attenuated the chronotropic action of ANG II exclusively in prehypertensive SHR neurons. This counterregulatory effect of ANG-(1-7) on ANG II action in prehypertensive SHR neurons was attenuated by cotreatment with either A-779, a Mas receptor antagonist, or bisperoxovanadium, a phosphatase and tensin homologue deleted on chromosome ten (PTEN) inhibitor. In addition, incubation of WKY and prehypertensive SHR neurons with ANG-(1-7) significantly increased PTEN activity. The data demonstrate that ANG-(1-7) counterregulates the chronotropic action of ANG II via a PTEN-dependent signaling pathway in prehypertensive SHR neurons.
Journal of Agricultural and Food Chemistry | 2010
Fanrong Yao; Chengwen Sun; Sam K. C. Chang
The objective was to investigate whether a lentil (Morton) extract had any protective effect on cardiac hypertrophy, which is one of the most significant sequelae of cardiovascular diseases. High phenolic compounds (43.4 mg of GAE/g), including thirteen phenolic acid and two flavonoids, were detected in the acetone/water/acetic acid lentil extract. The extract showed strong antioxidant ability (105 μmol of TE/g). The effect of lentil extract on angiotensin (Ang) II-induced cardiac hypertrophy was examined. Results showed that pretreatment with lentil extract (25, 50, 100 μg/mL) significantly attenuated Ang II (0.1 μM)-induced hypertrophy by 18, 28, and 36% in rat cardiomycytes, respectively; lentil extract (12.5, 25, 50 μg/mL) attenuated Ang II (0.1 μM)-induced hypertrophy by 9, 17, and 25% in human cardiomycytes, respectively. Intracellular reactive oxygen species (ROS) levels were enhanced by Ang II treatment, and this stimulatory action was significantly attenuated (33% inhibition) by lentil extract (100 μg/mL) in rat cardiomyocytes and attenuated by 22% by 50 μg/mL lentil extract in human cardiomyocytes. In conclusion, Morton lentil extracts attenuated Ang II-induced rat and human cardiomyocytes hypertrophy via decreasing intracellular ROS levels.
Food & Function | 2012
Fanrong Yao; Chengwen Sun; Sam K. C. Chang