Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Faqing Tang is active.

Publication


Featured researches published by Faqing Tang.


World Journal of Biological Chemistry | 2013

Cathepsins mediate tumor metastasis.

Gongjun Tan; Zhengke Peng; Jinping Lu; Faqing Tang

Cathepsins are highly expressed in various human cancers, associated with tumor metastasis. It is superfamily, concluding A, B, C, D, E, F, G, H, L, K, O, S, V, and W family members. As a group of lysosomal proteinases or endopeptidases, each member has a different function, playing different roles in distinct tumorigenic processes such as proliferation, angiogenesis, metastasis, and invasion. Cathepsins belong to a diverse number of enzyme subtypes, including cysteine proteases, serine proteases and aspartic proteases. The contribution of cathepsins to invasion in human cancers is well documented, although the precise mechanisms by which cathepsins exert their effects are still not clear. In the present review, the role of cathepsin family members in cancer is discussed.


BMC Cancer | 2011

Baicalein mediates inhibition of migration and invasiveness of skin carcinoma through Ezrin in A431 cells

Bin Wu; Ji Li; Damao Huang; Weiwei Wang; Yu Chen; Youxiang Liao; Xiaowei Tang; Hongfu Xie; Faqing Tang

BackgroundEzrin is highly expressed in skin cancer and promotes tumor metastasis. Ezrin serves as a promising target for anti-metastasis therapy. The aim of this study is to determine if the flavonoid bacailein inhibits the metastasis of skin cancer cells through Ezrin.MethodsCells from a cutaneous squamous carcinoma cell line, A431, were treated with baicalein at 0-60 μM to establish the non-cytotoxic concentration (NCC) range for baicalein. Following treatment with baicalein within this range, total Ezrin protein (both phosphorylated and unphosphorylated forms) and phosphorylated-Ezrin (phos-Ezrin) were detected by western blotting, and Ezrin RNA was detected in A431 cells using reverse transcription-polymerase chain reaction (RT-PCR). Thereafter, the motility and invasiveness of A431 cells following baicalein treatment were determined using wound-healing and Boyden chamber invasion assays. Short-interfering RNA (si-RNA) specifically targeting Ezrin was transfected into A431 cells, and a si-RNA Ezrin-A431 cell line was established by G418 selection. This stable cell line was transiently transfected with Ezrin and mutant Ezrin plasmids, and its motilityand invasiveness was subsequently determined to clarify whether bacailein inhibits these processes through Ezrin.ResultsWe determined the range of NCCs for baicalein to be 2.5-40 μM in A431 cells. Baicalein displayed a dose- and time-dependent inhibition of expressions of total Ezrin and phos-Ezrin within this range NCCs. In addition, it exerted this inhibitory effect through the reduction of Ezrin RNA transcript. Baicalein also inhibited the motility and invasiveness of A431 skin carcinoma cells within the range of NCCs, in a dose- and time-dependent manner. A431 cell motility and invasiveness were inhibited by 73% and 80% respectively when cells were treated with 20 μM baicalein. However, the motility and invasiveness of A431 cells containing the Ezrin mutant were not effectively inhibited by baicalein.ConclusionsBaicalein reduces the migration and invasiveness of A431 cells through the inhibition of Ezrin expression, which leads to the suppression of tumor metastasis.


Tumor Biology | 2015

The role of microRNAs in nasopharyngeal carcinoma

Gongjun Tan; Xiaowei Tang; Faqing Tang

Nasopharyngeal carcinoma (NPC), a distinct type of head and neck cancer, is prevalent in Southeast Asia and southern China. Ethnic background and environmental factors contribute to the development of NPC, further complicating its pathogenesis. An increasing body of evidence indicates that microRNAs (miRNAs) play an important role in the development and progression of NPC, in particular, 32 miRNAs are involved in NPC tumorigenesis, progression, and metastasis. The causal involvement of miRNAs in NPC and their possible use as biomarkers have been extensively studied with promising results, demonstrating the diagnostic and therapeutic potential of miRNAs in NPC. In this review, we summarize the role of all the known miRNAs involved in the signaling pathway implicated in NPC.


PLOS ONE | 2014

N,N'-dinitrosopiperazine-mediated AGR2 is involved in metastasis of nasopharyngeal carcinoma.

Yuejin Li; Jinping Lu; Zhengke Peng; Gongjun Tan; Na Liu; Damao Huang; Zhenlin Zhang; Chaojun Duan; Xiaowei Tang; Faqing Tang

Nasopharyngeal carcinoma (NPC) has a high metastatic character in the clinic, but its mechanism is not clear. As a carcinogen with organ specificity for the nasopharyngeal epithelium, N,N′-Dinitrosopiperazine (DNP) is involved in NPC metastasis. Herein, our data revealed that anterior gradient 2 (AGR2) was overexpressed in human NPC tissues, particularly in cervical lymph node metastatic NPC (LMNPC). High AGR2 expression was associated with NPC metastasis. Importantly, DNP induced AGR2 expression, and increased cell motility and invasion in the NPC cell line 6–10B. However, DNP-mediated cell motility and invasion was dramatically decreased when transfected with siRNA-AGR2. Further, AGR2 directly regulated cathepsin (CTS) B and D by binding them in vitro. These results indicate that DNP induces AGR2 expression, regulates CTSB and CTSD, increases cell motility and invasion, and promotes NPC tumor metastasis. Therefore, DNP-mediated AGR2 expression may be an important factor in prolific NPC metastasis.


BMC Biochemistry | 2012

Proteomic analysis on N, N′-dinitrosopiperazine-mediated metastasis of nasopharyngeal carcinoma 6-10B cells

Yuejin Li; Na Liu; Damao Huang; Zhenlin Zhang; Zhengke Peng; Chaojun Duan; Xiaowei Tang; Gongjun Tan; Guangrong Yan; Wenhua Mei; Faqing Tang

BackgroundNasopharyngeal carcinoma (NPC) has a high metastatic feature. N,N′-Dinitrosopiperazine (DNP) is involved in NPC metastasis, but its mechanism is not clear. The aim of this study is to reveal the pathogenesis of DNP-involved metastasis. 6-10B cells with low metastasis are from NPC cell line SUNE-1, were used to investigate the mechanism of DNP-mediated NPC metastasis.Results6-10B cells were grown in DMEM containing 2H4-L-lysine and 13C 6 15 N4-L-arginine or conventional L-lysine and L-arginine, and identified the incorporation of amino acid by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Labeled 6-10B cells were treated with DNP at 0 -18 μM to establish the non-cytotoxic concentration (NCC) range. NCC was 0 -10 μM. Following treatment with DNP at this range, the motility and invasion of cells were detected in vitro, and DNP-mediated metastasis was confirmed in the nude mice. DNP increased 6-10B cell metastasis in vitro and vivo. DNP-induced protein expression was investigated using a quantitative proteomic. The SILAC-based approach quantified 2698 proteins, 371 of which showed significant change after DNP treatment (172 up-regulated and 199 down-regulated proteins). DNP induced the change in abundance of mitochondrial proteins, mediated the status of oxidative stress and the imbalance of redox state, increased cytoskeletal protein, cathepsin, anterior gradient-2, and clusterin expression. DNP also increased the expression of secretory AKR1B10, cathepsin B and clusterin 6-10B cells. Gene Ontology and Ingenuity Pathway analysis showed that DNP may regulate protein synthesis, cellular movement, lipid metabolism, molecular transport, cellular growth and proliferation signaling pathways.ConclusionDNP may regulate cytoskeletal protein, cathepsin, anterior gradient-2, and clusterin expression, increase NPC cells motility and invasion, is involved NPC metastasis.


Oncotarget | 2016

Clusterin induced by N,N'-Dinitrosopiperazine is involved in nasopharyngeal carcinoma metastasis

Yuejin Li; Jinping Lu; Shan Zhou; Weiwei Wang; Gongjun Tan; Zhenlin Zhang; Zigang Dong; Tiebang Kang; Faqing Tang

Nasopharyngeal carcinoma (NPC) has a high metastatic clinicopathological feature. As a carcinogen factor, N,N′-Dinitrosopiperazine (DNP) is involved in NPC metastasis, but its precise mechanism has not been fully elucidated. Herein, we showed that DNP promotes NPC metastasis through up-regulating anterior clusterin (CLU). DNP was found to increase CLU, matrix metalloproteinases (MMP) 9 and vascular endothelial growth factor (VEGF) expression and activity, further DNP-increased MMP-9 and VEGF expression was through up-regulating CLU. We also found that DNP increased the binding of CLU with MMP-9 or VEGF. DNP induced the motility and invasion of NPC cell, which was inhibited by siRNA-CLU. The clinical investigation showed that CLU, MMP-9 and VEGF were positively correlated with the tumor-node -metastasis (TNM) classification. These results indicate that DNP may promote NPC tumor metastasis through up-regulating CLU, MMP-9 and VEGF expression. Therefore, DNP-increased CLU expression may be an important factor of NPC-high metastasis, and CLU may serve as a biomarker for NPC metastasis.


Oncotarget | 2016

Cdk3-promoted epithelial-mesenchymal transition through activating AP-1 is involved in colorectal cancer metastasis

Jinping Lu; Zhen Lin Zhang; Damao Huang; Na Tang; Yuejin Li; Zhengke Peng; Chengrong Lu; Zigang Dong; Faqing Tang

Cyclin dependent kinase-3 (Cdk3) is a positive regulator of the G1 mammalian cell cycle phase. Cdk3 is involved in cancer progression, but very little is known about its mechanism in cancer development and progression. Herein, we found that Cdk3 increased colorectal cancer metastasis through promoting epithelial-mesenchymal transition (EMT) shift. Cdk3 was found to highly express in metastatic cancer and induce cell motility and invasion. Cdk3 was shown to phosphorylate c-Jun at Ser 63 and Ser 73 in vitro and ex vivo. Cdk3-phosphorylated c-Jun at Ser 63 and Ser 73 resulted in an increased AP-1 activity. Ectopic expression of Cdk3 promoted colorectal cancer from epithelial to mesenchymal transition conjugating AP-1 activation, while AP-1 inhibition dramatically decreased Cdk3-increased EMT shift. These results showed that the Cdk3/c-Jun signaling axis mediating epithelial-mesenchymal transition plays an important role in colorectal cancer metastasis.


BMC Cancer | 2014

Identification of novel signaling components in N,N'-Dinitrosopiperazine-mediated metastasis of nasopharyngeal Carcinoma by quantitative phosphoproteomics

Damao Huang; Yuejin Li; Na Liu; Zhenlin Zhang; Zhengke Peng; Chaojun Duan; Xiaowei Tang; Gongjun Tan; Guangrong Yan; Faqing Tang

BackgroundNasopharyngeal carcinoma (NPC) is a highly invasive and metastatic cancer. N,N’-dinitrosopiperazine (DNP), a carcinogen with specificity for nasopharyngeal epithelium, facilitates NPC metastasis. However, the underlying mechanism is not known.MethodsQuantitative phosphoproteomics, using stable isotope labeling of amino acids in cell cultures, was employed to identify phosphoproteins associated with NPC metastasis mediated by DNP. NPC cell line 6-10B, which is relatively less metastatic, was used to investigate DNP-mediated metastasis. Boyden chamber invasion assay was used to measure DNP-induced motility and invasion, and nude mice were used to verify DNP-mediated metastasis in vivo. Several different phosphoproteins detected by proteomics analysis were verified by immunoblotting. DNP-mediated metastasis facilitated by lysine-rich CEACAM1 co-isolated protein (LYRIC) phosphorylation at serine 568 was confirmed using mutations targeting the phosphorylation site of LYRIC. DNP-mediated metastasis through LYRIC phosphorylation was confirmed in the NPC cell line CNE1. DNP-mediated LYRIC phosphorylation at serine 568 was also verified in metastatic tumors of BABL/c nude mice.ResultsBoyden chamber invasion assay indicated that DNP mediated cell motility and invasion of NPC cell 6-10B in vitro, and experiments with nude mice indicated that DNP increased 6-10B metastasis in vivo. In the phosphoproteomics analysis, we detected 216 phosphorylation sites on 130 proteins; among these, 48 phosphorylation sites on 30 unique phosphopeptides were modulated by DNP by at least 1.5-fold. DNP mediated the expression of phosphorylated GTPase, ferritin, LYRIC, and RNA polymerase, and it decreased the expression of phosphorylated torsin-1A protein 1. Furthermore, DNP induced LYRIC phosphorylation at serine 568 to facilitate cell motility and invasion, whereas DNP-mediated motility and invasion was decreased when serine 568 in LYRIC was mutated. In another NPC cell line, CNE1, DNP also mediated cell motility and invasion followed by enhanced phosphorylation of LYRIC at serine 568. Finally, phosphorylated-LYRIC expression at serine 568 was significantly increased in metastatic tumors induced by DNP.ConclusionDNP regulates multiple signaling pathways through protein phosphorylation, including the phosphorylation of LYRIC at serine 568, and mediates NPC metastasis. These findings provide insights on the complexity and dynamics of DNP-facilitated metastasis, and may help to gain a better understanding of the mechanisms by clarifying NPC-induced metastasis.


PLOS ONE | 2013

N,N'-Dinitrosopiperazine–Mediated Heat-Shock Protein 70-2 Expression Is Involved in Metastasis of Nasopharyngeal Carcinoma

Zhengke Peng; Na Liu; Damao Huang; Chaojun Duan; Yuejin Li; Xiaowei Tang; Wenhua Mei; Feng Zhu; Faqing Tang

N,N′-Dinitrosopiperazine (DNP) is invovled in nasopharyngeal carcinoma (NPC) development and metastasis, and it shows organ specificity to the nasopharyngeal epithelium. Herein, we demonstrate that DNP induces heat-shock protein (HSP) 70-2 expression in NPC cells (6-10B) at a non-cytotoxic concentration. DNP induced HSP70-2 expression in a dose- and time- dependent manner, but showed no effect on other HSP70 family members. Furthermore, DNP also increased HSP70-2 RNA transcription through directly binding to the hypoxia-responsive elements (HRE) and heat shock elements (HSE) located in the HSP70-2 promoter. DNP-mediated HSP70-2 expression might act through enhancing the transcription of HSP70-2 RNA. Importantly, DNP induced motility and invasion of 6-10B cells dose- and time-dependently, and DNP-mediated NPC metastasis was confirmed in nude mice, which showed high HSP70-2 expression in the metastatic tumor tissue. However, the motility and invasion of NPC cells that were stably transfected using short interfering RNA against HSP70-2 could not effectively induce DNP. These results indicate that DNP induces HSP70-2 expression through increasing HSP70-2 transcription, increases the motility and invasion of cells, and promotes NPC tumor metastasis. Therefore, DNP mediated HSP70-2 expression may be an important factor of NPC-high metastasis.


Tumor Biology | 2016

Krüppel-like factor 17, a novel tumor suppressor: its low expression is involved in cancer metastasis

Shan Zhou; Xiaowei Tang; Faqing Tang

Krüppel-like factor (KLF) family is highly conserved zinc finger transcription factors that regulate cell proliferation, differentiation, apoptosis, and migration. KLF17 is a member of the KLF family. Recent studies have demonstrated that KLF17 low expression and inactivation are caused by microRNA, gene mutation, and loss of heterozygosity in human tumors, which participates in tumor progression. KLF17 low expression increases cancer metastatic viability; its mechanism is that low KLF17 mediates epithelial-mesenchymal transition (EMT) through regulating EMT-related genes expression; the reduced-KLF17 also increases cancer metastasis though upregulating inhibitor of DNA binding 1 (ID1). Additionally, mutant p53 proteins are capable of developing a complex with KLF17, which mediate the depletion of KLF17 inhibiting EMT gene transcription and increases cancer metastasis. KLF17 downregulation also mediates the activation of TGF-β pathway.

Collaboration


Dive into the Faqing Tang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaowei Tang

Central South University

View shared research outputs
Top Co-Authors

Avatar

Damao Huang

Central South University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Na Liu

Central South University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chaojun Duan

Central South University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge