Farahnaz Sadat Golestan Hashemi
Universiti Putra Malaysia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Farahnaz Sadat Golestan Hashemi.
The Scientific World Journal | 2014
Farzad Aslani; Samira Bagheri; Nurhidayatullaili Muhd Julkapli; Abdul Shukor Juraimi; Farahnaz Sadat Golestan Hashemi; Ali Baghdadi
Rapid development and wide applications of nanotechnology brought about a significant increment on the number of engineered nanomaterials (ENs) inevitably entering our living system. Plants comprise of a very important living component of the terrestrial ecosystem. Studies on the influence of engineered nanomaterials (carbon and metal/metal oxides based) on plant growth indicated that in the excess content, engineered nanomaterials influences seed germination. It assessed the shoot-to-root ratio and the growth of the seedlings. From the toxicological studies to date, certain types of engineered nanomaterials can be toxic once they are not bound to a substrate or if they are freely circulating in living systems. It is assumed that the different types of engineered nanomaterials affect the different routes, behavior, and the capability of the plants. Furthermore, different, or even opposing conclusions, have been drawn from most studies on the interactions between engineered nanomaterials with plants. Therefore, this paper comprehensively reviews the studies on the different types of engineered nanomaterials and their interactions with different plant species, including the phytotoxicity, uptakes, and translocation of engineered nanomaterials by the plant at the whole plant and cellular level.
PLOS ONE | 2015
Farahnaz Sadat Golestan Hashemi; M. Y. Rafii; Mohd Razi Ismail; Mahmud Tengku Muda Mohamed; Harun A. Rahim; M. A. Latif; Farzad Aslani
When a phenotype of interest is associated with an external/internal covariate, covariate inclusion in quantitative trait loci (QTL) analyses can diminish residual variation and subsequently enhance the ability of QTL detection. In the in vitro synthesis of 2-acetyl-1-pyrroline (2AP), the main fragrance compound in rice, the thermal processing during the Maillard-type reaction between proline and carbohydrate reduction produces a roasted, popcorn-like aroma. Hence, for the first time, we included the proline amino acid, an important precursor of 2AP, as a covariate in our QTL mapping analyses to precisely explore the genetic factors affecting natural variation for rice scent. Consequently, two QTLs were traced on chromosomes 4 and 8. They explained from 20% to 49% of the total aroma phenotypic variance. Additionally, by saturating the interval harboring the major QTL using gene-based primers, a putative allele of fgr (major genetic determinant of fragrance) was mapped in the QTL on the 8th chromosome in the interval RM223-SCU015RM (1.63 cM). These loci supported previous studies of different accessions. Such QTLs can be widely used by breeders in crop improvement programs and for further fine mapping. Moreover, no previous studies and findings were found on simultaneous assessment of the relationship among 2AP, proline and fragrance QTLs. Therefore, our findings can help further our understanding of the metabolomic and genetic basis of 2AP biosynthesis in aromatic rice.
Acta Agriculturae Scandinavica Section B-soil and Plant Science | 2014
Farzad Aslani; Abdul Shukor Juraimi; Muhammad Saiful Ahmad-Hamdani; Dzolkhifli Omar; Amirul Alam; Farahnaz Sadat Golestan Hashemi; Abdul Hakim; Kamal Uddin
Herbicidal potential of aerial parts of Tinospora tuberculata on germination and seedling growth of seven test plant species, namely rice (Oryza sativa L.); two rice weeds, barnyardgrass (Echinochloa crus-galli L.) and weedy rice (O. sativa f. spontanea); and four vegetable crops, lettuce (Lactuca sativa L.), tomato (Solanum lycopersicum L.), carrot (Daucus carota L.), and cucumber (Cucumis sativus L.) were evaluated. Six concentrations of methanol extract (3.12, 6.25, 12.5, 25, 50, and 100 g L−1) were compared with the control (distilled water). The rate of seed germination and the radicle and hypocotyl length of 7-day-old test plant seedlings were reduced as the concentration of extracts increased compared to the control. Generally, the degree of toxicity of extracts derived from the leaves was more than the extracts derived from the stem. Cluster analysis and the concentrations required for 50% inhibition (defined as EC50) of all parameters showed that radicle growth was more suppressed than germination and hypocotyl growth. Lettuce and carrot were observed as the most sensitive plants while rice showed the highest tolerance to both extracts. Moreover, the dicot target plants were affected more severely than the monocots when treated with leaf extract. The chemical composition of the T. tuberculata methanolic extracts was analyzed by a GC–MS system. A total of 92 and 22 constituents (not previously identified) were found in the leaves and stem, respectively. The results showed that 17 of the 92 components in the leaves, as compared to 4 of 22 compounds in the stem, are known as toxic compounds. These results suggest that T. tuberculata contains a significant source of plant growth inhibitors with potential for the development of future natural herbicide.
Biotechnology & Biotechnological Equipment | 2018
Farahnaz Sadat Golestan Hashemi; Mohd Razi Ismail; M. Y. Rafii; Farzad Aslani; Gous Miah; Farah Melissa Muharam
ABSTRACT The betaine aldehyde dehydrogenase (BADH) gene plays a multifunctional role in plants. It is an important factor in fragrance production, abiotic stresses and antibiotic-free selection of transgenic plants. Molecular studies have presented a new picture of this critical factor involved in abiotic stress responses via the MAPK (mitogen-activated protein kinase) signalling pathway in numerous plants. Besides BADH, glycine betaine performs an important function in plant tolerance to environmental stresses. The presence of glycine betaine can help maintain the integrity of cell membranes against unexpected environmental stresses. BADH leads to production of glycine betaine through the oxidation of betaine aldehyde. Hence, BADH is considered a key regulator for glycine betaine formation. Consequently, by providing glycine betaine as a chemical interface, there is a critical role of BADH in enhancing the tolerance in an extensive range of plants subjected to different destructive abiotic stresses. The present article reviews the significant multifunctional role of the BADH gene in various plants, and also particularly argues how this important gene plays a responsive function to different destructive abiotic stresses, and its potential use in crop improvement using advanced technologies. Consequently, cloning of more BADH genes, specially from stress-tolerant plants, discovering their responsive signalling roles under environmental stresses, and validating such candidates for their potential are very helpful, and can open new windows to generate new stress-resistant crop cultivars.
bioRxiv | 2016
Saeid Kadkhodaei; Farahnaz Sadat Golestan Hashemi; Morvarid Akhavan Rezaei; Sahar Abbasiliasi; Tan Joo Shun; Hamid Rajabi Memari; Mahdi Moradpour; Arbakariya Ariff
In recombinant protein production, quantity and quality are the major challenges particularly for large scale and high-throughput production systems. The present study mainly focused on computational analysis and in silico systematic discovery of some key functional gene expression elements in microalgae Dunaliella salina as a case study which there is no or poor information in this regard. Among the key factors, we took a shot at matrix attachment regions (MARs), translation initiation sites (TIS), signal peptide (SP) sequences, gene optimization and transformation system. Computational analysis of MARs sequences provided enough information about the structure of these sequences and led us to design an artificial MAR sequence considering the essential motifs and underlain rules. As the consensus TIS, we revealed that A-3, G-6C-5C-4 and G+1C+2G+3 arrange the specific context in this microalgae which help in locating the ribosome at the correct reading frame. Bioinformatics studies unveiled the sequence of MASTRAPLLALLALLCAGSARA with the highest signal score as the specific SP for secretion systems. A multi-criteria optimization procedure was performed to redesign the coding sequence of the BAR selectable marker gene. The optimized version of the gene mainly covered the host codon preference, the less structured mRNA and exposure of TIS. As the intragenic factors, we selected an efficient promoter, a 5ˈ-UTR and an intron from the closely related species (Chlamydomonas Sp.) to construct the specific expression vectors. The expression cassettes containing optimized genetic elements could be delivered into the microalgae cells and conferred the resistance to the transformants for at least 90 generations. The findings indicated that the MARs flanking the expression cassette along with the optimized expression elements particularly codon adaptation could potentially improve transformation efficiency and stability. The findings can be efficiently deployed as an empirical model for systematic discovery of the key expression elements and optimization of the cis/transgenes.
Journal of Integrative Agriculture | 2016
Farzad Aslani; Abdul Shukor Juraimi; Muhammad Saiful Ahmad-Hamdani; Farahnaz Sadat Golestan Hashemi; Amirul Alam; Abdul Hakim; Kamal Uddin
The study was conducted to evaluate the responses of rice and rice weed seedlings (barnyardgrass and weedy rice) at the three-leaf stage to Tinospora tuberculata leaf methanol extract (3.12, 6.25 and 12.5 g L−1) under hydroponic culture. It shows that the leaf methanol extract had various degrees effects depending on target plant species and each tested index (biomass, root length, shoot length, transpiration volume, chlorophyll a, chlorophyll b and carotenoid contents). The effective concentration of the leaf extract capable of reducing 50% of rice growth was higher than those of target weed species. Moreover, the root length was more tolerant to leaf methanol extract in comparison to the other plant parameters measured. A greater reduction was observed in chlorophyll a content compared to chlorophyll b and carotenoid. The results revealed that the reduction of transpiration volume closely coincided with the magnitude of growth inhibition of tested plants. Ultra-fast liquid chromatography analysis revealed 11 of 32 peaks in chemical profile, including benzoic acid, caffeic acid, chlorogenic acid, isoorientin, isovitexin, orientin, p-anisic acid, syringic acid, trans-cinnamic acid, trans-ferulic acid, and vitexin have the same retention time with those peaks of the extract. The amount of compounds was present in the range of between 4 817 and 115.5 mg kg−1 dry weight (DW). The concentration-response bioassay of all 11 individual compounds and their equimolar mixture against the seeds of barnyardgrass revealed their contribution in the allelopahic activity of T. tuberculata leaf extract. The examined compounds and their combination exhibited various degrees of growth inhibitory effects on the early growth of barnyardgrass. Therefore, the specific number, concentration, combination and inhibitory activity of bioactive compounds leads to allelopathy activity of T. tuberculata leaves which could be employable directly as a natural herbicide and its growth inhibitor compounds can be used as a template for producing new herbicides.
Chilean Journal of Agricultural Research | 2016
Farzad Aslani; Abdul Shukor Juraimi; Muhammad Saiful Ahmad-Hamdani; Farahnaz Sadat Golestan Hashemi; Md. Amirul Alam
2 CHILEAN JOURNAL OF AGRICULTURAL RESEARCH 76(1) JANUARY-MARCH 2016 4 OCTOBER DECEMBER 2016 Phytotoxic potential of powder and methanol extract of Tinospora crispa (L.) Hook. f. & Thomson leaves as preand post-emergence applications on the growth of transplanted rice (Oryza sativa L.) and associated weeds were evaluated under glasshouse and field conditions to determine its herbicidal activity as soil additive material in rice fields. In glasshouse study, utilization of leaf powder and leaf extract of T. crispa as pre-emergence application provided a satisfactory weed control, inhibiting seed germination and reducing the growth of germinated seedlings with an increase in the yield of transplanted rice. The magnitude of the phytotoxic effects at the same concentration levels in the test plants was dependent on the application methods (powder and extract), time of application (pre-and post-emergence), concentration and the recipient species. Field experiment consisted of T. crispa leaf powder (1, 2 and 4 t ha), chemical herbicide (pretilachlor + pyribenzoxim at 1 L ha) as positive control and a negative control (no treatment). There was nonsignificant difference between leaf powder-treated plots (2 and 4 t ha doses) and plots that received herbicidal treatment in terms of percentage reduction of emergence and weed DM. In plots amended with 1, 2 and 4 t ha leaf powder, weed dry weight was reduced by nearly 80%, 97% and 99% and total weed seedling density was inhibited by 73%, 94% and 99%, respectively, compared to untreated plots. There was a significant promotion on grain yield, straw dry weight and number of seed per panicle of rice, when treated with leaf powders and chemical herbicide compared with negative control. These results suggest that T. crispa has a significant phytotoxic activity on the germination and growth of weed species in rice fields.
Gene | 2015
Farahnaz Sadat Golestan Hashemi; M. Y. Rafii; Mohd Razi Ismail; Mahmud Tengku Muda Mohamed; Harun A. Rahim; M. A. Latif; Farzad Aslani
Euphytica | 2015
Farahnaz Sadat Golestan Hashemi; M. Y. Rafii; Mohd Razi Ismail; Mahmud Tengku Muda Mohamed; Harun A. Rahim; Mohamad Abd Latif; Farzad Aslani
Archive | 2018
Saeid Kadkhodaei; Farahnaz Sadat Golestan Hashemi; Morvarid Akhavan Rezaei; Sahar Abbasiliasi; Joo Shun Tan; Hamid Rajabi Memari; Faruku Bande; Ali Baradaran; Mahdi Moradpour; Ariff Arbakariya B