Farbod Sedaghat-Hamedani
Heidelberg University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Farbod Sedaghat-Hamedani.
European Heart Journal | 2015
Jan Haas; Karen Frese; Barbara Peil; Wanda Kloos; Andreas Keller; Rouven Nietsch; Zhu Feng; Sabine Müller; Elham Kayvanpour; Britta Vogel; Farbod Sedaghat-Hamedani; Wei Keat Lim; Xiaohong Zhao; Dmitriy Fradkin; Doreen Köhler; Simon Fischer; Jennifer Franke; Sabine Marquart; Ioana Barb; Daniel Tian Li; Ali Amr; Philipp Ehlermann; Derliz Mereles; Tanja Weis; Sarah Hassel; Andreas Kremer; Vanessa King; Emil Wirsz; Richard Isnard; Michel Komajda
AIM Numerous genes are known to cause dilated cardiomyopathy (DCM). However, until now technological limitations have hindered elucidation of the contribution of all clinically relevant disease genes to DCM phenotypes in larger cohorts. We now utilized next-generation sequencing to overcome these limitations and screened all DCM disease genes in a large cohort. METHODS AND RESULTS In this multi-centre, multi-national study, we have enrolled 639 patients with sporadic or familial DCM. To all samples, we applied a standardized protocol for ultra-high coverage next-generation sequencing of 84 genes, leading to 99.1% coverage of the target region with at least 50-fold and a mean read depth of 2415. In this well characterized cohort, we find the highest number of known cardiomyopathy mutations in plakophilin-2, myosin-binding protein C-3, and desmoplakin. When we include yet unknown but predicted disease variants, we find titin, plakophilin-2, myosin-binding protein-C 3, desmoplakin, ryanodine receptor 2, desmocollin-2, desmoglein-2, and SCN5A variants among the most commonly mutated genes. The overlap between DCM, hypertrophic cardiomyopathy (HCM), and channelopathy causing mutations is considerably high. Of note, we find that >38% of patients have compound or combined mutations and 12.8% have three or even more mutations. When comparing patients recruited in the eight participating European countries we find remarkably little differences in mutation frequencies and affected genes. CONCLUSION This is to our knowledge, the first study that comprehensively investigated the genetics of DCM in a large-scale cohort and across a broad gene panel of the known DCM genes. Our results underline the high analytical quality and feasibility of Next-Generation Sequencing in clinical genetic diagnostics and provide a sound database of the genetic causes of DCM.
Basic Research in Cardiology | 2011
Benjamin Meder; Andreas Keller; Britta Vogel; Jan Haas; Farbod Sedaghat-Hamedani; Elham Kayvanpour; Steffen Just; Anne Borries; Jessica Rudloff; Petra Leidinger; Eckart Meese; Hugo A. Katus; Wolfgang Rottbauer
MicroRNAs (miRNAs) are important regulators of adaptive and maladaptive responses in cardiovascular diseases and hence are considered to be potential therapeutical targets. However, their role as novel biomarkers for the diagnosis of cardiovascular diseases still needs to be systematically evaluated. We assessed here for the first time whole-genome miRNA expression in peripheral total blood samples of patients with acute myocardial infarction (AMI). We identified 121 miRNAs, which are significantly dysregulated in AMI patients in comparison to healthy controls. Among these, miR-1291 and miR-663b show the highest sensitivity and specificity for the discrimination of cases from controls. Using a novel self-learning pattern recognition algorithm, we identified a unique signature of 20 miRNAs that predicts AMI with even higher power (specificity 96%, sensitivity 90%, and accuracy 93%). In addition, we show that miR-30c and miR-145 levels correlate with infarct sizes estimated by Troponin T release. The here presented study shows that single miRNAs and especially miRNA signatures derived from peripheral blood, could be valuable novel biomarkers for cardiovascular diseases.
Embo Molecular Medicine | 2013
Jan Haas; Karen Frese; Yoon Jung Park; Andreas Keller; Britta Vogel; Anders M. Lindroth; Dieter Weichenhan; Jennifer Franke; Simon Fischer; Andrea Bauer; Sabine Marquart; Farbod Sedaghat-Hamedani; Elham Kayvanpour; Doreen Köhler; Nadine M. Wolf; Sarah Hassel; Rouven Nietsch; Thomas Wieland; Philipp Ehlermann; Jobst Hendrik Schultz; Andreas Dösch; Derliz Mereles; Stefan E. Hardt; Johannes Backs; Jörg D. Hoheisel; Christoph Plass; Hugo A. Katus; Benjamin Meder
Dilated cardiomyopathies (DCM) show remarkable variability in their age of onset, phenotypic presentation, and clinical course. Hence, disease mechanisms must exist that modify the occurrence and progression of DCM, either by genetic or epigenetic factors that may interact with environmental stimuli. In the present study, we examined genome‐wide cardiac DNA methylation in patients with idiopathic DCM and controls. We detected methylation differences in pathways related to heart disease, but also in genes with yet unknown function in DCM or heart failure, namely Lymphocyte antigen 75 (LY75), Tyrosine kinase‐type cell surface receptor HER3 (ERBB3), Homeobox B13 (HOXB13) and Adenosine receptor A2A (ADORA2A). Mass‐spectrometric analysis and bisulphite‐sequencing enabled confirmation of the observed DNA methylation changes in independent cohorts. Aberrant DNA methylation in DCM patients was associated with significant changes in LY75 and ADORA2A mRNA expression, but not in ERBB3 and HOXB13. In vivo studies of orthologous ly75 and adora2a in zebrafish demonstrate a functional role of these genes in adaptive or maladaptive pathways in heart failure.
European Heart Journal | 2013
Britta Vogel; Andreas Keller; Karen Frese; Petra Leidinger; Farbod Sedaghat-Hamedani; Elham Kayvanpour; Wanda Kloos; Christina Backe; Ann Thanaraj; Thomas Brefort; Markus Beier; Stefan E. Hardt; Eckart Meese; Hugo A. Katus; Benjamin Meder
AIMS Non-ischaemic heart failure is one of the todays most prevalent cardiovascular disorders. Since modern pharmacotherapy has proved to be very effective in delaying disease progression and preventing death, imaging modalities and molecular biomarkers play an important role in early identification and clinical management as well as risk assessment of patients. The present study evaluated for the first time whole peripheral blood miRNAs as novel biomarker candidates for non-ischaemic heart failure with reduced ejection fraction (HF-REF). METHODS AND RESULTS We assessed genome-wide miRNA expression profiles in 53 HF-REF patients and 39 controls. We could identify and validate several miRNAs that show altered expression levels in non-ischaemic HF-REF, discriminating cases from controls both as single markers or when combined in a multivariate signature. In addition, we demonstrate that the miRNAs of this signature significantly correlate with disease severity as indicated by left ventricular ejection fraction. CONCLUSION Our data further denote that miRNAs are potential biomarkers for systolic heart failure. Since their detection levels in whole blood are also related to the degree of left ventricular dysfunction, they may serve as objective molecular tools to assess disease severity and prognosis.
Clinical Chemistry | 2013
Britta Vogel; Andreas Keller; Karen Frese; Wanda Kloos; Elham Kayvanpour; Farbod Sedaghat-Hamedani; Sarah Hassel; Sabine Marquart; Markus Beier; Evangelos Giannitis; Stefan E. Hardt; Hugo A. Katus; Benjamin Meder
BACKGROUND Alterations in microRNA (miRNA) expression patterns in whole blood may be useful biomarkers of diverse cardiovascular disorders. We previously reported that miRNAs are significantly dysregulated in acute myocardial infarction (AMI) and applied machine-learning techniques to define miRNA subsets with high diagnostic power for AMI diagnosis. However, the kinetics of the time-dependent sensitivity of these novel miRNA biomarkers remained unknown. METHODS To characterize temporal changes in the expressed human miRNAs (miRNome), we performed here the first whole-genome miRNA kinetic study in AMI patients. We measured miRNA expression levels at multiple time points (0, 2, 4, 12, 24 h after initial presentation) in patients with acute ST-elevation myocardial infarction by using microfluidic primer extension arrays and quantitative real-time PCR. As a prerequisite, all patients enrolled had to have cardiac troponin T concentrations <50 ng/L on admission as measured with a high-sensitivity assay. RESULTS We found a subset of miRNAs to be significantly dysregulated both at initial presentation and during the course of AMI. Additionally, we identified novel miRNAs that are dysregulated early during myocardial infarction, such as miR-1915 and miR-181c*. CONCLUSIONS The present proof-of-concept study provides novel insights into the dynamic changes of the human miRNome during AMI.
Analytical Chemistry | 2016
Christina Backes; Farbod Sedaghat-Hamedani; Karen Frese; Martin Hart; Nicole Ludwig; Benjamin Meder; Eckart Meese; Andreas Keller
A certain degree of bias in high-throughput molecular technologies including microarrays and next-generation sequencing (NGS) is known. To quantify the actual impact of the biomarker discovery platform on miRNA profiles, we first performed a meta-analysis: raw data of 1 539 microarrays and 705 NGS blood-borne miRNomes were statistically evaluated, suggesting a substantial influence of the technology on biomarker profiles. We observed highly significant dependency of the miRNA nucleotide composition on the expression level. Higher expression in NGS was discovered for uracil-rich miRNAs (p = 7 × 10(-37)), while high expression in microarrays was found predominantly for guanine-rich miRNAs (p = 3 × 10(-33)). To verify the findings, 10 identical replicates of one individual were measured using NGS and microarrays (2 525 miRNAs from miRBase version 21). Overall, we calculated a correlation coefficient of 0.414 for both technologies. Detailed analysis however revealed that the correlation was observed only for miRNAs in the early miRBase versions (<8). The majority of miRNAs (2 013 from miRBase version 8 onward) was not correlated between microarray and NGS. Specifically, we observed 67 miRNAs with a median read count above 10 in NGS, while they were not detected in any of the 10 replicated array experiments. In contrast, 234 miRNAs were discovered in all 10 replicated array measurements but were not found in any of the NGS experiments of the same individual. While the first group had average guanine content of 22%, the latter group consisted of 41% of this nucleotide. Selected concordant and discordant miRNAs were tested in quantitative real-time-polymerase chain reaction (RT-qPCR) experiments again of the same individual, providing further evidence for the substantial bias depending on the base composition. As a consequence, biomarkers that have been discovered by specific high-throughout technologies have to be carefully considered. Especially for validation of the platform, the selection of reasonable candidates is essential.
Clinical Chemistry | 2015
Farbod Sedaghat-Hamedani; Elham Kayvanpour; Lutz Frankenstein; Derliz Mereles; Ali Amr; Sebastian J. Buss; Andreas Keller; Evangelos Giannitsis; Katrin Jensen; Hugo A. Katus; Benjamin Meder
BACKGROUND Biomarkers are well established for diagnosis of myocardial infarction [cardiac troponins, high-sensitivity cardiac troponins (hs-cTn)], exclusion of acute and chronic heart failure [B-type natriuretic peptide (BNP), N-terminal proBNP (NT-proBNP)] and venous thromboembolism (d-dimers). Several studies have demonstrated acute increases in cardiac biomarkers and altered cardiac function after strenuous sports that can pretend a cardiovascular emergency and interfere with state-of-the-art clinical assessment. METHODS We performed a systematic review and metaanalysis of biomarker and cardiovascular imaging changes after endurance exercise. We searched for observational studies published in the English language from 1997 to 2014 that assessed these biomarkers or cardiac function and morphology directly after endurance exercise. Of 1787 identified abstracts, 45 studies were included. RESULTS Across all studies cardiac troponin T (cTnT) exceeded the cutoff value (0.01 ng/mL) in 51% (95% CI, 37%-64%) of participants. The measured pooled changes from baseline for high-sensitivity cTnT (hs-cTnT) were +26 ng/L (95% CI, 5.2-46.0), for cTnI +40 ng/L (95% CI, 21.4; 58.0), for BNP +10 ng/L (95% CI, 4.3; 16.6), for NT-proBNP +67 ng/L (95% CI, 49.9; 84.7), and for d-dimer +262 ng/mL (95% CI, 165.9; 358.7). Right ventricular end diastolic diameter increased and right ventricular ejection fraction as well as the ratio of the early to late transmitral flow velocities decreased after exercise, while no significant changes were observed in left ventricular ejection fraction. CONCLUSIONS Current cardiovascular biomarkers (cTnT, hs-cTnT, BNP, NT-proBNP, and d-dimer) that are used in clinical diagnosis of pulmonary embolism, acute coronary syndrome, and heart failure are prone to alterations due to strenuous exercise. Hence, it is necessary to take previous physical exercise into account when a cardiac emergency is suspected.
Interactive Cardiovascular and Thoracic Surgery | 2014
Sadegh Ali-Hassan-Sayegh; Seyed Jalil Mirhosseini; Mohammad Rezaeisadrabadi; Hamid Reza Dehghan; Farbod Sedaghat-Hamedani; Elham Kayvanpour; Aron-Frederik Popov; Oliver J. Liakopoulos
This systematic review with meta-analysis sought to determine the impact of antioxidants (N-acetylcysteine [NAC], polyunsaturated fatty acids [PUFAs] and vitamins) on incidence of postoperative atrial fibrillation (POAF) and duration of length of hospital stay. Medline, Embase, Elsevier, Sciences online database and Google Scholar literature search was made for studies in randomized controlled trials. The effect sizes measured were odds ratio (OR) for categorical variable and standard mean difference (SMD) with 95% confidence interval (CI) for calculating differences between mean values of duration of hospitalization in intervention and control groups. A value of P < 0.1 for Q-test or I(2) > 50% indicated significant heterogeneity between the studies. Literature search of all major databases retrieved 355 studies. After screening, a total of 23 trials were identified that reported outcomes of 4278 patients undergoing cardiac surgery. Pooled effects estimates on POAF showed a significant reduction after NAC (OR: 0.56, 95% CI: 0.40-0.77, P < 0.001), PUFA (OR: 0.84, 95% CI: 0.71-0.99, P = 0.03) and vitamin C treatment (OR: 0.50, 95% CI: 0.27-0.91, P = 0.02). Hospital length of stay was not reduced after NAC therapy (SMD: 0.082, 95% CI -0.09 to 0.25, P = 0.3), but could be decreased with PUFA (SMD: -0.185, 95% CI: -0.35 to -0.018, P = 0.03) and vitamin C (SMD: -0.325, 95% CI -0.50 to -0.14, P < 0.01). In conclusion, perioperative antioxidant supplementations with NAC, PUFA and vitamin C prevent atrial fibrillation after cardiac surgery. Moreover, PUFA and vitamin C are capable to reduce hospital stay, whereas NAC lacks this capacity.
Molecular and Cellular Biology | 2011
Benjamin Meder; Inken G. Huttner; Farbod Sedaghat-Hamedani; Steffen Just; Tillman Dahme; Karen Frese; Britta Vogel; Doreen Köhler; Wanda Kloos; Jessica Rudloff; Sabine Marquart; Hugo A. Katus; Wolfgang Rottbauer
ABSTRACT Integrin-linked kinase (ILK) is an essential component of the cardiac mechanical stretch sensor and is bound in a protein complex with parvin and PINCH proteins, the so-called ILK-PINCH-parvin (IPP) complex. We have recently shown that inactivation of ILK or β-parvin activity leads to heart failure in zebrafish via reduced protein kinase B (PKB/Akt) activation. Here, we show that PINCH proteins localize at sarcomeric Z disks and costameres in the zebrafish heart and skeletal muscle. To investigate the in vivo role of PINCH proteins for IPP complex stability and PKB signaling within the vertebrate heart, we inactivated PINCH1 and PINCH2 in zebrafish. Inactivation of either PINCH isoform independently leads to instability of ILK, loss of stretch-responsive anf and vegf expression, and progressive heart failure. The predominant cause of heart failure in PINCH morphants seems to be loss of PKB activity, since PKB phosphorylation at serine 473 is significantly reduced in PINCH-deficient hearts and overexpression of constitutively active PKB reconstitutes cardiac function in PINCH morphants. These findings highlight the essential function of PINCH proteins in controlling cardiac contractility by granting IPP/PKB-mediated signaling.
BMC Medicine | 2010
Majid Esmaeilzadeh; Christine Dictus; Elham Kayvanpour; Farbod Sedaghat-Hamedani; Michael Eichbaum; Stefan Hofer; Guido Engelmann; Hamidreza Fonouni; Mohammad Golriz; Jan Schmidt; Andreas Unterberg; Arianeb Mehrabi; Rezvan Ahmadi
BackgroundAn accident or a catastrophic disease may occasionally lead to brain death (BD) during pregnancy. Management of brain-dead pregnant patients needs to follow special strategies to support the mother in a way that she can deliver a viable and healthy child and, whenever possible, also be an organ donor. This review discusses the management of brain-dead mothers and gives an overview of recommendations concerning the organ supporting therapy.MethodsTo obtain information on brain-dead pregnant women, we performed a systematic review of Medline, EMBASE and the Cochrane Central Register of Controlled Trials (CENTRAL). The collected data included the age of the mother, the cause of brain death, maternal medical complications, gestational age at BD, duration of extended life support, gestational age at delivery, indication of delivery, neonatal outcome, organ donation of the mothers and patient and graft outcome.ResultsIn our search of the literature, we found 30 cases reported between1982 and 2010. A nontraumatic brain injury was the cause of BD in 26 of 30 mothers. The maternal mean age at the time of BD was 26.5 years. The mean gestational age at the time of BD and the mean gestational age at delivery were 22 and 29.5 weeks, respectively. Twelve viable infants were born and survived the neonatal period.ConclusionThe management of a brain-dead pregnant woman requires a multidisciplinary team which should follow available standards, guidelines and recommendations both for a nontraumatic therapy of the fetus and for an organ-preserving treatment of the potential donor.