Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Farha Naz is active.

Publication


Featured researches published by Farha Naz.


Cell Biochemistry and Biophysics | 2013

Microtubule affinity-regulating kinase 4: structure, function, and regulation

Farha Naz; Farah Anjum; Asimul Islam; Faizan Ahmad; Md. Imtaiyaz Hassan

MAP/Microtubule affinity-regulating kinase 4 (MARK4) belongs to the family of serine/threonine kinases that phosphorylate the microtubule-associated proteins (MAP) causing their detachment from the microtubules thereby increasing microtubule dynamics and facilitating cell division, cell cycle control, cell polarity determination, cell shape alterations, etc. The MARK4 gene encodes two alternatively spliced isoforms, L and S that differ in their C-terminal region. These isoforms are differentially regulated in human tissues including central nervous system. MARK4L is a 752-residue-long polypeptide that is divided into three distinct domains: (1) protein kinase domain (59–314), (2) ubiquitin-associated domain (322–369), and (3) kinase-associated domain (703–752) plus 54 residues (649–703) involved in the proper folding and function of the enzyme. In addition, residues 65–73 are considered to be the ATP-binding domain and Lys88 is considered as ATP-binding site. Asp181 has been proposed to be the active site of MARK4 that is activated by phosphorylation of Thr214 side chain. The isoform MARK4S is highly expressed in the normal brain and is presumably involved in neuronal differentiation. On the other hand, the isoform MARK4L is upregulated in hepatocarcinoma cells and gliomas suggesting its involvement in cell cycle. Several biological functions are also associated with MARK4 including microtubule bundle formation, nervous system development, and positive regulation of programmed cell death. Therefore, MARK4 is considered as the most suitable target for structure-based rational drug design. Our sequence, structure- and function-based analysis should be helpful for better understanding of mechanisms of regulation of microtubule dynamics and MARK4 associated diseases.


Journal of Molecular Graphics & Modelling | 2015

PKR-inhibitor binds efficiently with human microtubule affinity-regulating kinase 4

Farha Naz; Mohd. Shahbaaz; Shama Khan; Krishna Bisetty; Asimul Islam; Faizan Ahmad; Md. Imtaiyaz Hassan

MAP/microtubule affinity-regulating kinase 4 (MARK4) plays a central role in the cellular physiology, and it is inseparably linked with many human diseases including cancer, diet induced obesity, type2 diabetes and neurodegenerative disorders. Here, we studied the interaction of PKR-inhibitor with two variants of human MARK4. One variant is named as MARK4-F1 which has 59 N-terminal residues along with kinase domain while another variant is MARK4-F2 which has kinase domain only. Molecular-docking, molecular dynamics (MD) simulation and fluorescence-binding studies were undertaken to understand the role of N-terminal 59-residues in the binding of substrate/inhibitors. Molecular docking studies revealed that the PKR-inhibitor binds in the large hydrophobic cavity of the kinase domain of MARK4 through several hydrophobic and hydrogen-bonded interactions. Furthermore, MD simulation showed a stable parameters for the complexes of both MARK4-F1 and MARK4-F2 to PKR-inhibitor with marginal difference in their binding affinities. A significant decrease in the fluorescence intensity of MARK4 was observed on successive addition of the PKR-inhibitor. Using fluorescence data we have calculated the binding-affinity and the number of binding site of PKR-inhibitor to the MARK4. A significantly high binding affinity was observed for the PKR-inhibitor to the MARK4 variants. However, there is no any significant difference in the binding affinity of PKR-inhibitor to the MARK4 variants was observed, indicating that 59 N-terminal residues of MARK4-F1 are not playing a crucial role in the ligand binding. The present study will provide an insights into designing of new PKR-inhibitor derivative as potent and selective therapeutic agent against many life threatening diseases which are associated with MARK4.


Journal of Biomolecular Structure & Dynamics | 2016

Human microtubule affinity-regulating kinase 4 is stable at extremes of pH

Farha Naz; Parvesh Singh; Asimul Islam; Faizan Ahmad; Md. Imtaiyaz Hassan

MAP/microtubule affinity-regulating kinase 4 (MARK4) is a member of adenosine monophosphate-activated protein kinases, directly associated with cancer and neurodegenerative diseases. Here, we have cloned, expressed, and purified two variants of MARK4 [the kinase domain (MARK4-F2), and kinase domain along with 59 N-terminal residues (MARK4-F1)] and compared their stability at varying pH range. Structural and functional changes were observed by incubating both forms of MARK4 in buffers of different pH. We measured the secondary structure of MARK4 using circular dichroism and tertiary structure by measuring intrinsic fluorescence and absorbance properties along with the size of proteins by dynamic light scattering. We observed that at extremes of pH (below pH 3.5 and above pH 9.0), MARK4 is quite stable. However, a remarkable aggregate formation was observed at intermediate pH (between pH 3.5 and 9.0). To further validate this result, we have modeled both forms of MARK4 and performed molecular dynamics simulation for 15 ns. The spectroscopic observations are in excellent agreement with the findings of molecular dynamics simulation. We also performed ATPase activity at varying pH and found a significant correlation of structure of MARK4 with its enzyme activity. It is interesting to note that both forms of MARK4 are showing a similar pattern of structure changes with reference to pH.


Journal of Biomolecular Structure & Dynamics | 2017

Evaluation of human microtubule affinity-regulating kinase 4 inhibitors: fluorescence binding studies, enzyme, and cell assays

Farha Naz; Neha Sami; Abu Turab Naqvi; Asimul Islam; Faizan Ahmad; Md. Imtaiyaz Hassan

Human microtubule affinity-regulating kinase 4 (MARK4) is considered as an encouraging drug target for the design and development of inhibitors to cure several life-threatening diseases such as Alzheimer disease, cancer, obesity, and type-II diabetes. Recently, we have reported four ligands namely, BX-912, BX-795, PKR-inhibitor, and OTSSP167 (hydrochloride) which bind preferentially to the two different constructs of human MARK4 containing kinase domain. To ensure the role of ubiquitin-associated (UBA) domain in the ligand binding, we made a newer construct of MARK4 which contains both kinase and UBA domains, named as MARK4-F3. We observed that OTSSP167 (hydrochloride) binds to the MARK4-F3 with a binding constant (K) of 3.16 × 106, M−1 (±.21). However, UBA-domain of MARK4-F3 doesn’t show any interaction with ligands directly as predicted by the molecular docking. To validate further, ATPase inhibition assays of all three constructs of MARK4 in the presence of mentioned ligands were carried out. An appreciable correlation between the binding experiments and ATPase inhibition assays of MARK4 was observed. In addition, cell-proliferation inhibition activity for all four ligands on the Human embryonic kidney (HEK-293) and breast cancer cell lines (MCF-7) was performed using MTT assay. IC50 values of OTSSP167 for HEK-293 and MCF-7 were found to be 58.88 (±1.5), and 48.2 (±1.6), respectively. OTSSP167 among all four inhibitors, showed very good enzyme inhibition activity against three constructs of MARK4. Moreover, all four inhibitors showed anti-neuroblastoma activity and anticancer properties. In conclusion, OTSSP167 may be considered as a promising scaffold to discover novel inhibitors of MARK4.


International Journal of Biological Macromolecules | 2018

Investigation of molecular mechanism of recognition between citral and MARK4: A newer therapeutic approach to attenuate cancer cell progression

Farha Naz; Faez Iqbal Khan; Taj Mohammad; Parvez Khan; Saaliqa Manzoor; Gulam Mustafa Hasan; Kevin A. Lobb; Suaib Luqman; Asimul Islam; Faizan Ahmad; Md. Imtaiyaz Hassan

Microtubule affinity regulating kinase 4 (MARK4) is a member of AMP-activated protein kinase, found to be involved in apoptosis, inflammation and many other regulatory pathways. Since, its aberrant expression is directly associated with the cell cycle and thus cancer. Therefore, MARK4 is being considered as a potential drug target for cancer therapy. Here, we investigated the mechanism of inhibition of MARK4 activity by citral. Docking studies suggested that citral effectively binds to the active site cavity, and complex is stabilized by several interactions. We further performed molecular dynamics simulation of MARK4-citral complex under explicit water condition for 100ns and observed that binding of citral to MARK4 was quite stable. Fluorescence binding studies suggested that citral strongly binds to MARK4 and thereby inhibits its enzyme activity which was measured by the kinase inhibition assay. We further performed MTT assay and observed that citral inhibits proliferation of breast cancer cell line MCF-7. This work provides a newer insight into the use of citral as novel cancer therapeutics through the MARK4 inhibition. Results may be employed to design novel therapeutic molecule using citral as a scaffold for MARK4 inhibition to fight related diseases.


Scientific Reports | 2017

Elucidation of Dietary Polyphenolics as Potential Inhibitor of Microtubule Affinity Regulating Kinase 4: In silico and In vitro Studies

Parvez Khan; Shafikur Rahman; Aarfa Queen; Saaliqa Manzoor; Farha Naz; Gulam Mustafa Hasan; Suaib Luqman; Jihoe Kim; Asimul Islam; Faizan Ahmad; Md. Imtaiyaz Hassan

Microtubule affinity regulating kinase 4 (MARK4) is a Ser/Thr kinase belonging to AMPK-like family, has recently become an important drug target against cancer and neurodegenerative disorders. In this study, we have evaluated different natural dietary polyphenolics including rutin, quercetin, ferulic acid, hesperidin, gallic acid and vanillin as MARK4 inhibitors. All compounds are primarily binds to the active site cavity of MARK4. In silico observations were further complemented by the fluorescence-binding studies and isothermal titration calorimetry (ITC) measurements. We found that rutin and vanillin bind to MARK4 with a reasonably high affinity. ATPase and tau-phosphorylation assay further suggesting that rutin and vanillin inhibit the enzyme activity of MARK4 to a great extent. Cell proliferation, ROS quantification and Annexin-V staining studies are clearly providing sufficient evidences for the apoptotic potential of rutin and vanillin. In conclusion, rutin and vanillin may be considered as potential inhibitors for MARK4 and further exploited to design novel therapeutic molecules against MARK4 associated diseases.


International Journal of Biological Macromolecules | 2016

Ubiquitin-associated domain of MARK4 provides stability at physiological pH.

Farha Naz; Neha Sami; Asimul Islam; Faizan Ahmad; Md. Imtaiyaz Hassan

Microtubule affinity regulating Kinase 4 (MARK4) belongs to the family of AMP-activated protein kinase. It phosphorylates microtubule associated proteins at specific sites (Serine in KXGS motifs) in the microtubule-binding repeats. In our previous studies, two constructs, namely, kinase domain with 59 N-terminal residues (residues 1-310) and only kinase domain (residues 59-310) of MARK4 show aggregation at physiological pH. However, these two constructs were stable at extremes of pH conditions. Now the question arises: how is MARK4 stable at physiological pH in-vivo? To answer this question, we have successfully cloned, expressed, and purified UBA-domain along with the kinase domain of MARK4 and performed spectroscopic measurements and activity assays. We observed a pronounced secondary and tertiary structure and ATPase activity in the MARK4 at physiological pH. In conclusion, UBA domain may be important to maintain the structure, stability and activity of MARK4 under physiological conditions.


PLOS Neglected Tropical Diseases | 2018

Sphingosine-1-phosphate signaling in Leishmania donovani infection in macrophages

Mohd Arish; Atahar Husein; Rahat Ali; Shams Tabrez; Farha Naz; Zulfazal Ahmad; Abdur Rub

Background Sphingosine-1-phosphate (S1P) is a crucial regulator of a wide array of cellular processes, such as apoptosis, cell proliferation, migration, and differentiation, but its role in Leishmania donovani infection is unknown. Methodology/ principal findings In the present study, we observed that L. donovani infection in THP-1 derived macrophages (TDM) leads to decrease in the expression of S1pr2 and S1pr3 at mRNA level. We further observed that Leishmania infection inhibits the phosphorylation of sphingosine kinase 1 (sphK1) in a time-dependent manner. Exogenous S1P supplementation decreases L. donovani induced ERK1/2 phosphorylation and increases p38 phosphorylation in TDM, resulting in a decrease in the intracellular parasite burden in a dose-dependent manner. On the other hand, sphK inhibition by DMS increases ERK1/2 phosphorylation leading to increased IL-10 and parasite load. To gain further insight, cytokines expression were checked in S1P supplemented TDM and we observed increase in IL-12, while decrease IL-10 expression at mRNA and protein levels. In addition, treatment of antagonist of S1PR2 and S1PR3 such as JTE-013 and CAY10444 respectively enhanced Leishmania-induced ERK1/2 phosphorylation and parasite load. Conclusions Our overall study not only reports the significant role of S1P signaling during L. donovani infection but also provides a novel platform for the development of new drugs against Leishmaniasis.


Omics A Journal of Integrative Biology | 2015

Designing New Kinase Inhibitor Derivatives as Therapeutics Against Common Complex Diseases: Structural Basis of Microtubule Affinity-Regulating Kinase 4 (MARK4) Inhibition

Farha Naz; Mohd. Shahbaaz; Krishna Bisetty; Asimul Islam; Faizan Ahmad; Md. Imtaiyaz Hassan


Molecular and Cellular Biochemistry | 2015

Atypical PKC phosphorylates microtubule affinity-regulating kinase 4 in vitro

Farha Naz; Asimul Islam; Faizan Ahmad; Md. Imtaiyaz Hassan

Collaboration


Dive into the Farha Naz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Krishna Bisetty

Durban University of Technology

View shared research outputs
Top Co-Authors

Avatar

Mohd. Shahbaaz

Durban University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suaib Luqman

Central Institute of Medicinal and Aromatic Plants

View shared research outputs
Researchain Logo
Decentralizing Knowledge