Farhad Amiri
Université de Montréal
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Farhad Amiri.
Hypertension | 2003
Ernesto L. Schiffrin; Farhad Amiri; Karim Benkirane; Marc Iglarz; Quy N. Diep
Peroxisome proliferator-activated receptors (PPAR) are nuclear receptors acting as transcription factors on numerous target genes after heterodimerization with the retinoid X receptor. PPAR-alpha and PPAR-gamma may be activated by different agonists, although the endogenous ligands are unknown. Although PPAR-alpha is mainly involved in fatty acid oxidation and expressed in liver, kidney, and skeletal muscle, and PPAR-gamma is mainly involved in fat cell differentiation and insulin sensitivity, both are expressed in smooth muscle cells and myocardium, although PPAR-gamma are scarce in the latter. Activators of PPAR-alpha such as fatty acids and fibrates, and PPAR-gamma such as thiazolidinediones have been shown to exert antiproliferative effects, antagonize angiotensin II actions in vivo and in vitro, and exert antioxidant actions inhibiting generation of reactive oxygen species and activation of inflammatory mediators on blood vessels and the heart. These agents lowered blood pressure in several models of hypertension and corrected endothelial dysfunction. They exerted anti-inflammatory and antifibrotic actions on blood vessels and the heart. With the development of dual alpha/gamma-PPAR activators, these newer agents may become interesting therapeutic agents for prevention of vascular and cardiac complications of hypertension as well as for preventative therapy in other forms of cardiovascular disease.
Hypertension | 2002
Agostino Virdis; Mario Fritsch Neves; Farhad Amiri; Emilie Viel; Rhian M. Touyz; Ernesto L. Schiffrin
Abstract—Angiotensin II plays an important role in vascular remodeling. We investigated the role of aldosterone, which is stimulated by angiotensin II, as a mediator of angiotensin II–induced vascular structural and functional alterations. Sprague-Dawley rats (n=8 to 12/group) received angiotensin II (120 ng/kg per minute, subcutaneously) for 14 days ± spironolactone or hydralazine (25 mg/kg per day). An additional group received aldosterone (750 ng/h, subcutaneously) ± spironolactone. Systolic blood pressure was increased by angiotensin II (P <0.001) and reduced by spironolactone and hydralazine (P <0.001). Aldosterone-induced increase of blood pressure was reduced by spironolactone (P <0.05). In mesenteric small arteries studied on a pressurized myograph, media/lumen ratio was increased (P <0.001) and acetylcholine-mediated relaxation was impaired in angiotensin II–infused rats (P <0.001); both were partially improved by spironolactone (P <0.05) but not by hydralazine. Aldosterone-induced increase of media/lumen ratio (P <0.001) and impaired response to acetylcholine (P <0.001) were normalized by spironolactone. Response to sodium nitroprusside was similar in all groups. Aortic NADPH oxidase activity was increased (P <0.01) by angiotensin II and reduced by spironolactone and hydralazine. Aldosterone also increased (P <0.05) activation of NADPH oxidase, an effect abolished by spironolactone. Plasma thiobarbituric acid–reactive substances (a marker of oxidative stress), higher in angiotensin II and aldosterone rats (P <0.001), were normalized by spironolactone. In conclusion, spironolactone, which inhibited aldosterone actions, partially corrected structural and functional angiotensin II–induced abnormalities. These effects were associated with reduced vascular NADPH oxidase activity and decreased plasma markers of oxidative stress. Our findings suggest that aldosterone may mediate some of angiotensin II–induced vascular effects in hypertension, in part via increased oxidative stress.
Circulation | 2002
Quy N. Diep; Mohammed El Mabrouk; Jeffrey S. Cohn; Dierk Endemann; Farhad Amiri; Agostino Virdis; Mario Fritsch Neves; Ernesto L. Schiffrin
Background—Pioglitazone and rosiglitazone, thiazolidinedione peroxisome proliferator–activated receptor-&ggr; (PPAR&ggr;) activators, reduce blood pressure (BP) in some hypertensive models by unclear mechanisms. We tested the hypothesis that pioglitazone or rosiglitazone would prevent BP elevation and vascular dysfunction in angiotensin (Ang) II–infused rats by direct vascular effects. Methods and Results—Sprague-Dawley rats received Ang II (120 ng · kg−1 · min−1 SC) with or without pioglitazone (10 mg · kg−1 · d−1) or rosiglitazone (5 mg · kg−1 · d−1) for 7 days. Systolic BP, elevated in Ang II–infused rats (176±5 mm Hg) versus controls (109±2 mm Hg, P <0.01), was reduced by pioglitazone (134±2 mm Hg) or rosiglitazone (123±2 mm Hg). In mesenteric small arteries studied in a pressurized myograph, media/lumen ratio was increased (P <0.05) and acetylcholine-induced relaxation impaired in Ang II–infused rats (P <0.05); both were normalized by the thiazolidinediones. In Ang II–infused rats, vascular DNA synthesis (by 3H-thymidine incorporation); expression of cell cycle proteins cyclin D1 and cdk4, angiotensin II type 1 receptors, vascular cell adhesion molecule-1, and platelet and endothelial cell adhesion molecule; and nuclear factor-&kgr;B activity were increased. These changes were abrogated by pioglitazone or rosiglitazone. Conclusions—Thiazolidinedione PPAR-&ggr; activators attenuated the development of hypertension, corrected structural abnormalities, normalized cell growth, and improved endothelial dysfunction induced by Ang II and prevented upregulation of angiotensin II type 1 receptors, cell cycle proteins, and proinflammatory mediators. Thiazolidinediones may be useful in the prevention and/or treatment of hypertension, particularly when it is associated with insulin resistance or diabetes mellitus.
Circulation | 2004
Farhad Amiri; Agostino Virdis; Mario Fritsch Neves; Marc Iglarz; Nabil G. Seidah; Rhian M. Touyz; Timothy L. Reudelhuber; Ernesto L. Schiffrin
Background—Endothelin (ET)-1 is a potent vasoconstrictor that contributes to vascular remodeling in hypertension and other cardiovascular diseases. Endogenous ET-1 is produced predominantly by vascular endothelial cells. To directly test the role of endothelium-derived ET-1 in cardiovascular pathophysiology, we specifically targeted expression of the human preproET-1 gene to the endothelium by using the Tie-2 promoter in C57BL/6 mice. Methods and Results—Ten-week-old male C57BL/6 transgenic (TG) and nontransgenic (wild type; WT) littermates were studied. TG mice exhibited 3-fold higher vascular tissue ET-1 mRNA and 7-fold higher ET-1 plasma levels than did WT mice but no significant elevation in blood pressure. Despite the absence of significant blood pressure elevation, TG mice exhibited marked hypertrophic remodeling and oxidant excess-dependent endothelial dysfunction of resistance vessels, altered ET-1 and ET-3 vascular responses, and significant increases in ETB expression compared with WT littermates. Moreover, TG mice generated significantly higher oxidative stress, possibly through increased activity and expression of vascular NAD(P)H oxidase than did their WT counterparts. Conclusions—In this new murine model of endothelium-restricted human preproET-1 overexpression, ET-1 caused structural remodeling and endothelial dysfunction of resistance vessels, consistent with a direct nonhemodynamic effect of ET-1 on the vasculature, at least in part through the activation of vascular NAD(P)H oxidase.
Hypertension | 2002
Quy N. Diep; Farhad Amiri; Rhian M. Touyz; Jeffrey S. Cohn; Dierk Endemann; Mario Fritsch Neves; Ernesto L. Schiffrin
Docosahexaenoic acid (DHA), a peroxisome proliferator–activated receptor-α (PPARα) activator, reduces blood pressure (BP) in some hypertensive models by unclear mechanisms. We tested the hypothesis that DHA would prevent BP elevation and improve vascular dysfunction in angiotensin (Ang) II–infused rats by modulating of NADPH oxidase activity and inflammation in vascular wall. Sprague-Dawley rats received Ang II (120 ng/kg per minute SC) with or without DHA (2.5 mL of oil containing 40% DHA/d PO) for 7 days. Systolic BP (mm Hg), elevated in Ang II–infused rats (172±3) versus controls (108±2, P P P
Journal of Hypertension | 2004
Agostino Virdis; Mario Fritsch Neves; Farhad Amiri; Rhian M. Touyz; Ernesto L. Schiffrin
Objectives Angiotensin (Ang) II stimulates vascular reactive oxygen species generation via NAD(P)H oxidase activation. We investigated whether vascular NAD(P)H oxidase influences structure and function of resistance arteries from Ang II-infused mice. Methods Mice received Ang II alone (400 ng/kg per min, subcutaneously), Ang II + apocynin (NAD(P)H oxidase inhibitor, 2.5 mg/day, in the food), apocynin alone or Ang II + hydralazine (50mg/kg per day) for 14 days. Systolic blood pressure (SBP) was measured by tail-cuff methodology and function and structure of small mesenteric arteries were studied in pressurized vessels. Vascular collagen type I/III content was evaluated by confocal immunofluorescence microscopy and by immunoblotting. Results The rise in SBP induced by Ang II (P < 0.001) was prevented by apocynin and hydralazine. Media/lumen ratio increase in Ang II-infused mice (P < 0.01) was prevented by apocynin. Acetylcholine-mediated relaxation, which was impaired in Ang II-infused mice (P < 0.001), was improved by apocynin. Confocal microscopy and immunoblotting demonstrated increased collagen type I/III content in mesenteric arteries from Ang II-infused mice. Apocynin, but not hydralazine, prevented the increase in collagen abundance in Ang II-infused mice. The increase in vascular NAD(P)H oxidase activity by Ang II (P < 0.001) was prevented by apocynin. Conclusions The NAD(P)H oxidase inhibitor apocynin reduced blood pressure elevation and prevented structural alterations, endothelial dysfunction, and collagen deposition in the media of small arteries in Ang II-infused mice. Although hydralazine also decreased blood pressure, it had no effects on vascular collagen content. Our findings suggest that NAD(P)H oxidase activity plays an important role in vascular functional and structural changes and in the composition of the vascular wall in Ang II-dependent hypertension.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2005
Carolina De Ciuceis; Farhad Amiri; Pascal Brassard; Dierk Endemann; Rhian M. Touyz; Ernesto L. Schiffrin
Objective—Angiotensin (Ang) II-induced vascular damage may be partially mediated by reactive oxygen species generation and inflammation. Homozygous osteopetrotic mice (Op/Op), deficient in macrophage colony-stimulating factor (m-CSF), exhibit reduced inflammation. We therefore investigated Ang II effects on vascular structure, function, and oxidant stress generation in this model. Methods and Results—Adult Op/Op, heterozygous (Op/+), and wild type (+/+) mice underwent 14-day Ang II (1000 ng/kg per minute) or saline infusion. Blood pressure (BP) was assessed by radiotelemetry, mesenteric resistance artery vascular reactivity was studied on a pressurized myograph, and vascular superoxide and NAD(P)H oxidase activity by lucigenin chemiluminescence. Ang II increased BP in Op/+ and +/+ mice but not in Op/Op. Ang II-treated Op/+ and +/+ mice showed reduced acetylcholine-mediated relaxation (maximal relaxation, respectively, 64% and 67% versus 84% and 93% in respective controls; P<0.05), which was unaffected by l-NAME. Ang II-infused Op/Op mice arteries showed significantly less endothelial dysfunction than vehicle-infused counterparts (maximal relaxation 87% versus 96% in shams). Resistance arteries from Ang II-infused +/+ and Op/+ mice had significantly increased media-to-lumen ratio and media thickness, neither of which was altered in Op/Op mice compared with untreated littermates. Vascular media cross-sectional area, NAD(P)H oxidase activity and expression, and vascular cell adhesion molecule (VCAM)-1 expression were significantly increased by Ang II only in +/+ mice (P<0.05). Conclusions—m-CSF–deficient mice (Op/Op) developed less endothelial dysfunction, vascular remodeling, and oxidative stress induced by Ang II than +/+ littermates, suggesting a critical role of m-CSF and proinflammatory mediators in Ang II-induced vascular injury.
Journal of Hypertension | 2004
Rhian M. Touyz; Guoying Yao; Emilie Viel; Farhad Amiri; Ernesto L. Schiffrin
Objective The role of reactive oxygen species (ROS) in mitogen-activated protein kinase (MAPK) signaling by angiotensin (Ang) II and endothelin-1 (ET-1) in human vascular smooth muscle cells (VSMC) was investigated. Design VSMCs were derived from resistance arteries from healthy subjects. MAPK activity was assessed using phospho-specific antibodies. ROS generation was measured by CMH2DCFDA fluorescence and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity by lucigenin chemiluminescence. Results Ang II and ET-1 increased MAPK phosphorylation (P < 0.01). Pre-treatment with Tiron and Tempol, •O2− scavengers, attenuated agonist-stimulated phosphorylation of p38MAPK, c-Jun N-terminal kinases (JNK) and ERK5, but not of ERK1/2 (extracellular signal-regulated kinases). Apocynin and diphenylene iodinium (DPI), NAD(P)H oxidase inhibitors, decreased Ang II-induced responses 60–70%. ET-1-mediated MAPK phosphorylation was unaffected by apocynin but was reduced (> 50%) by thenoyltrifluoroacetone (TIFT) and carboxyl cyanide-m-chlorophenylhydrazone (CCCP), mitochondrial inhibitors. Allopurinol and Nω-nitro-l-arginine methyl ester (l-NAME), xanthine oxidase and nitric oxide synthase (NOS) inhibitors, respectively, did not influence MAPK activation. Intracellular ROS generation, was increased by Ang II and ET-1 (P < 0.01). DPI inhibited Ang II- but not ET-1-mediated ROS production. Expression of p22phox and p47phox and activation of NAD(P)H oxidase were increased by Ang II but not by ET-1. CCCP and TIFT significantly attenuated ET-1-mediated ROS formation (P < 0.05), without influencing Ang II effects. Conclusions Ang II activates p38MAPK, JNK and ERK5 primarily through NAD(P)H oxidase-generated ROS. ET-1 stimulates these kinases via redox-sensitive processes that involve mitochondrial-derived ROS. These data suggest that redox-dependent activation of MAPKs by Ang II and ET-1 occur through distinct ROS-generating systems that could contribute to differential signaling by these agonists in VSMCs.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2003
Marc Iglarz; Rhian M. Touyz; Farhad Amiri; Marie-France Lavoie; Quy N. Diep; Ernesto L. Schiffrin
Objective—Peroxisome proliferator–activated receptors (PPARs) may modulate in vitro the vascular production of vasoactive peptides such as endothelin-1 (ET-1). Thus, we investigated in vivo the interaction between PPARs and ET-1 in deoxycorticosterone acetate (DOCA)–salt rats that overexpress vascular ET-1. Methods and Results—Unilaterally nephrectomized 16-week-old Sprague-Dawley rats (Uni-Nx) were divided into 4 groups (n=6 each): control group, DOCA-salt group, DOCA-salt+PPAR-&ggr; activator (rosiglitazone, 5 mg · kg−1 · d−1), or DOCA-salt+PPAR-&agr; activator (fenofibrate, 100 mg · kg−1 · d−1). Systolic blood pressure was significantly increased in the DOCA-salt group (240±11 vs 121±2 mm Hg in Uni-Nx, P <0.01). Progression of hypertension was partially prevented by coadministration of rosiglitazone (172±3 mm Hg vs DOCA-salt, P <0.05) but not by fenofibrate. Both PPAR activators abrogated the increase in prepro-ET-1 mRNA content in the mesenteric vasculature of DOCA-salt rats. The media-to-lumen ratio was increased in DOCA-salt rats (10.3±0.9% vs 4.9±0.5% in Uni-Nx rats, P <0.01). Rosiglitazone and fenofibrate prevented the hypertrophic remodeling observed in DOCA-salt rats without affecting vascular stiffness. Rosiglitazone but not fenofibrate prevented endothelial dysfunction in pressurized mesenteric arteries. Finally, both rosiglitazone and fenofibrate prevented the vascular increase in superoxide anion production induced in DOCA-salt animals. Conclusions—PPAR-&agr; and -&ggr; activators were able to modulate endogenous production of ET-1 and had beneficial vascular effects in endothelin-dependent hypertension.
Hypertension | 2003
Marc Iglarz; Rhian M. Touyz; Emilie Viel; Pierre Paradis; Farhad Amiri; Quy N. Diep; Ernesto L. Schiffrin
Abstract—Peroxisome proliferator-activated receptor (PPAR) activation may prevent cardiac hypertrophy and inhibit production of endothelin-1 (ET-1), a hypertrophic agent. The aim of this in vivo study was to investigate the effects of PPAR activators on cardiac remodeling in DOCA-salt rats, a model overexpressing ET-1. Unilaterally nephrectomized 16-week-old Sprague-Dawley rats (Uni-Nx) were randomly divided into 4 groups: control rats, DOCA-salt, DOCA-salt+rosiglitazone (PPAR-&ggr; activator, 5 mg/kg per day), and DOCA-salt+fenofibrate (PPAR-&agr; activator, 100 mg/kg per day). After 3 weeks of treatment, mean arterial blood pressure was significantly increased in DOCA-salt by 36 mm Hg. Mean arterial blood pressure was normalized by coadministration of rosiglitazone but not by fenofibrate. Both PPAR activators prevented cardiac fibrosis and abrogated the increase in prepro–ET-1 mRNA content in the left ventricle of DOCA-salt rats. Coadministration of rosiglitazone or fenofibrate failed to prevent thickening of left ventricle (LV) walls as measured by echocardiography and the increase in atrial natriuretic peptide mRNA levels. However, rosiglitazone and fenofibrate prevented the decrease in LV internal diameter and thus concentric remodeling of the LV found in DOCA-salt rats. Taken together, these data indicate a modulatory role of PPAR activators on cardiac remodeling in mineralocorticoid-induced hypertension, in part associated with decreased ET-1 production.